Femtosecond optical frequency combs

A laser frequency comb allows the conversion of the very rapid oscillations of visible light of some 100’s of THz down to frequencies that can be handled with conventional electronics. This capability has enabled the most precise laser spectroscopy experiments yet that allowed to test quantum electrodynamics, to determine fundamental constants and to search for possible slow changes of these constants. Using an optical frequency reference in combination with a laser frequency comb has made it possible to construct all optical atomic clocks, that are now outperforming even the best cesium atomic clocks. In future direct frequency comb spectroscopy might enable high resolution laser spectroscopy in the extreme ultraviolet for the first time. Frequency combs are also used to calibrate astronomical spectrographs and might reach an accuracy that is sufficient to observe the expansion of the universe in real time.

[1]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[2]  James Gary Eden,et al.  High-order harmonic generation and other intense optical field-matter interactions: review of recent experimental and theoretical advances , 2004 .

[3]  P. Russell Photonic Crystal Fibers , 2003, Science.

[4]  Theodor W. Hänsch,et al.  Feasibility of Coherent xuv Spectroscopy on the 1S-2S Transition in Singly Ionized Helium , 2009 .

[5]  T. Hänsch,et al.  Frequency dependence of the fixed point in a fluctuating frequency comb , 2007 .

[6]  T. Fischer Comment on "Shear viscosity of langmuir monolayers in the low-density limit". , 2004, Physical review letters.

[7]  R. Holzwarth,et al.  Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer , 2001 .

[8]  Salomon,et al.  Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock , 2000, Physical review letters.

[9]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[10]  James F. Babb Casimir effects in atomic, molecular, and optical physics , 2010, 1007.1440.

[11]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[12]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[13]  A. Weiner,et al.  Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication. , 2009, Optics letters.

[14]  A. Baltuska,et al.  Measurement of the phase of few-cycle laser pulses. , 2003 .

[15]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[16]  A. Clairon,et al.  Metrology of the hydrogen and deuterium atoms: Determination of the Rydberg constant and Lamb shifts , 2000 .

[17]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[18]  B Lipphardt,et al.  Limit on the present temporal variation of the fine structure constant. , 2004, Physical review letters.

[19]  Jun Ye,et al.  Direct Frequency Comb Spectroscopy , 2010 .

[20]  André Clairon,et al.  Quantum projection noise in an atomic fountain: a high stability cesium frequency standard , 1999 .

[21]  E. Goulielmakis,et al.  Direct Measurement of Light Waves , 2004, Science.

[22]  V. Chebotayev,et al.  Narrow resonances of two-photon absorption of super-narrow pulses in a gas , 1977 .

[23]  I. Maksimovic,et al.  New limits on the drift of fundamental constants from laboratory measurements. , 2003, Physical review letters.

[24]  S. Osterman,et al.  Astronomical spectrograph calibration with broad-spectrum frequency combs , 2008, 0803.0565.

[25]  F. Kärtner,et al.  Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers. , 2010, Optics express.

[26]  Antonio Manescau,et al.  High‐precision calibration of spectrographs , 2010 .

[27]  Thomas Udem,et al.  Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. , 2007, Physical review letters.

[28]  Lennart Robertsson,et al.  Femtosecond-laser-based optical clockwork with instability, 2002, Optics letters.

[29]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system , 2009, 0906.2780.

[30]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[31]  V Pervak,et al.  High harmonic frequency combs for high resolution spectroscopy. , 2008, Physical review letters.

[32]  Thomas Udem,et al.  Optical frequency standards and measurements , 2001 .

[33]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[34]  L. Frenkel,et al.  Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. , 1967 .

[35]  Michel Mayor,et al.  An extrasolar planetary system with three Neptune-mass planets , 2006, Nature.

[36]  R. Holzwarth,et al.  High‐precision wavelength calibration of astronomical spectrographs with laser frequency combs , 2007, astro-ph/0703622.

[37]  A. Verhoef,et al.  Laser technology: Source of coherent kiloelectronvolt X-rays , 2005, Nature.

[38]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[39]  H. Haus,et al.  Group velocity of solitons. , 2001, Optics letters.

[40]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[41]  M. T. Murphy,et al.  Revisiting VLT/UVES constraints on a varying fine-structure constant , 2008 .

[42]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[43]  E. A. Curtis,et al.  An Optical Clock Based on a Single Trapped 199Hg+ Ion , 2001, Science.

[44]  Thomas Udem,et al.  A frequency comb in the extreme ultraviolet , 2005, Nature.

[45]  Floyd M. Gardner,et al.  Phaselock techniques , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[46]  C. Fallnich,et al.  Frequency stabilization of mode-locked Erbium fiber lasers using pump power control , 2004 .

[47]  J Reichert,et al.  Accurate measurement of large optical frequency differences with a mode-locked laser. , 1999, Optics letters.

[48]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[49]  M. Chapman,et al.  Deterministic loading of individual atoms to a high-finesse optical cavity. , 2007, Physical review letters.

[50]  Jun Ye,et al.  Efficient output coupling of intracavity high-harmonic generation. , 2008, Optics letters.

[51]  G. Angelow,et al.  Direct frequency comb generation from an octave spanning prismless Ti:sapphire laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[52]  T. Hänsch,et al.  Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium. , 2007, Optics letters.

[53]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[54]  Scott A. Diddams,et al.  10-GHz Self-Referenced Optical Frequency Comb , 2009, Science.

[55]  Masayuki Nakagawa,et al.  The nuclear interaction at Oklo 2 billion years ago , 2000 .

[56]  Jun Ye,et al.  Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. , 2005, Physical review letters.

[57]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[58]  S. Schiller,et al.  Spectrometry with frequency combs. , 2002, Optics letters.

[59]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[60]  Jun Ye,et al.  Vacuum-ultraviolet frequency combs from below-threshold harmonics , 2009, 0901.3768.

[61]  Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. , 2004, Physical review letters.

[62]  F. Riehle,et al.  First phase-coherent frequency measurement of visible radiation. , 1996, Physical review letters.

[63]  S. A. van den Berg,et al.  Direct frequency comb spectroscopy of trapped ions , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[64]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[65]  Symmetry breaking and time variation of gauge couplings , 2002, hep-ph/0204258.

[66]  Gordon W. Day,et al.  Accurate frequencies of molecular transitions used in laser stabilization: the 3.39‐μm transition in CH4 and the 9.33‐ and 10.18‐μm transitions in CO2 , 1973 .

[67]  P. Dirac The Cosmological Constants , 1937, Nature.

[68]  OBSERVATIONS OF NONCOLLINEAR PHASE MATCHING IN OPTICAL PARAMETRIC NOISE EMISSION , 1968 .

[69]  W M Itano,et al.  Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. , 2003, Physical review letters.

[70]  A. Bartels,et al.  High resolution spectroscopy with a femtosecond laser frequency comb , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..