SMPDL3b modulates insulin receptor signaling in diabetic kidney disease

[1]  B. Bergman,et al.  Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. , 2018, JCI insight.

[2]  B. Ogretmen,et al.  Sphingolipid metabolism in cancer signalling and therapy , 2017, Nature Reviews Cancer.

[3]  N. Hait,et al.  The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer , 2017, Mediators of inflammation.

[4]  Hui-Young Lee,et al.  Adipocyte-Specific Deficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance , 2017, Diabetes.

[5]  Liping Huang,et al.  Sphingosine Kinase 2 Deficiency Attenuates Kidney Fibrosis via IFN-γ. , 2017, Journal of the American Society of Nephrology : JASN.

[6]  Y. Frishberg,et al.  Deficiency of the sphingosine‐1‐phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications , 2017, Human mutation.

[7]  J. Krepinsky,et al.  Caveolin-1 in the Pathogenesis of Diabetic Nephropathy: Potential Therapeutic Target? , 2017, Current Diabetes Reports.

[8]  K. Schwarz,et al.  Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency , 2017, The Journal of clinical investigation.

[9]  L. Metherell,et al.  Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome , 2017, The Journal of clinical investigation.

[10]  B. Marples,et al.  Sphingomyelinase‐like phosphodiesterase 3b mediates radiation‐induced damage of renal podocytes , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  P. Meikle,et al.  Sphingolipids and phospholipids in insulin resistance and related metabolic disorders , 2017, Nature Reviews Endocrinology.

[12]  P. Meikle,et al.  Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism. , 2016, Cell metabolism.

[13]  G. Superti-Furga,et al.  Crystal Structure of the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3B Provides Insights into Determinants of Substrate Specificity* , 2016, The Journal of Biological Chemistry.

[14]  D. Maiguel,et al.  Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. , 2016, Journal of the American Society of Nephrology : JASN.

[15]  M. Idzko,et al.  C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils , 2016, The Journal of Immunology.

[16]  A. Gomez-Muñoz,et al.  Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells. , 2016, Biochemical pharmacology.

[17]  T. Kinoshita,et al.  Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling , 2016, Journal of Lipid Research.

[18]  W. Prinz,et al.  A conserved family of proteins facilitates nascent lipid droplet budding from the ER , 2022 .

[19]  Hong-Hee Kim,et al.  Caveolin-1 regulates osteoclast differentiation by suppressing cFms degradation , 2015, Experimental & Molecular Medicine.

[20]  G. Superti-Furga,et al.  The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity , 2015, Cell reports.

[21]  S. Dheen,et al.  Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+-treated MN9D cells in vitro , 2015, Neuroscience.

[22]  J. Lee,et al.  Methyl-β-cyclodextrin up-regulates collagen I expression in chronologically-aged skin via its anti-caveolin-1 activity , 2014, Oncotarget.

[23]  C. Forsblom,et al.  Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. , 2015, Journal of the American Society of Nephrology : JASN.

[24]  E. Parati,et al.  Autocrine/paracrine sphingosine‐1‐phosphate fuels proliferative and stemness qualities of glioblastoma stem cells , 2014, Glia.

[25]  A. Castro,et al.  Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events , 2014, Cell cycle.

[26]  D. Maiguel,et al.  Podocyte-Specific GLUT4-Deficient Mice Have Fewer and Larger Podocytes and Are Protected From Diabetic Nephropathy , 2014, Diabetes.

[27]  Anup M Oommen,et al.  Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases , 2013, Journal of lipids.

[28]  R. Weichselbaum,et al.  Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. , 2013, American journal of respiratory cell and molecular biology.

[29]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[30]  M. Ratajczak,et al.  CONDITIONING FOR HEMATOPOIETIC TRANSPLANTATION ACTIVATES THE COMPLEMENT CASCADE AND INDUCES A PROTEOLYTIC ENVIRONMENT IN BONE MARROW – A NOVEL ROLE FOR BIOACTIVE LIPIDS AND SOLUBLE C5b-C9 AS HOMING FACTORS , 2011, Leukemia.

[31]  I. Novak,et al.  Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes: On the Possible Roles of Caveolae, Insulin Receptors, FAK and ERK1/2 , 2011, Cellular Physiology and Biochemistry.

[32]  E. Salido,et al.  Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis , 2011, Nature Medicine.

[33]  M. Rastaldi,et al.  Rituximab Targets Podocytes in Recurrent Focal Segmental Glomerulosclerosis , 2011, Science Translational Medicine.

[34]  G. King,et al.  Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. , 2011, Kidney international.

[35]  S. Summers,et al.  Sphingolipids and insulin resistance: the five Ws , 2010, Current opinion in lipidology.

[36]  C. Gong,et al.  Deregulation of sphingolipid metabolism in Alzheimer's disease , 2010, Neurobiology of Aging.

[37]  Reiko Kurotani,et al.  Caveolin gene transfer improves glucose metabolism in diabetic mice. , 2010, American journal of physiology. Cell physiology.

[38]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[39]  A. Gomez-Muñoz,et al.  Ceramide-1-phosphate in cell survival and inflammatory signaling. , 2010, Advances in experimental medicine and biology.

[40]  D. Pisetsky,et al.  Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. , 2009, The Journal of clinical investigation.

[41]  A. Gomez-Muñoz,et al.  Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. , 2009, Cellular signalling.

[42]  A. Fornoni,et al.  Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. , 2008, Kidney international.

[43]  A. Gomez-Muñoz,et al.  Ceramide 1-phosphate stimulates macrophage proliferation through activation of the PI3-kinase/PKB, JNK and ERK1/2 pathways. , 2008, Cellular signalling.

[44]  P. V. Van Veldhoven,et al.  Neutropenia with Impaired Immune Response to Streptococcus pneumoniae in Ceramide Kinase-Deficient Mice , 2008, The Journal of Immunology.

[45]  Yusuf A. Hannun,et al.  Principles of bioactive lipid signalling: lessons from sphingolipids , 2008, Nature Reviews Molecular Cell Biology.

[46]  Y. Igarashi,et al.  Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance , 2007, Proceedings of the National Academy of Sciences.

[47]  M. Birnbaum,et al.  Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. , 2007, Cell metabolism.

[48]  G. Boysen,et al.  Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. , 2007, Kidney international.

[49]  A. Gomez-Muñoz Ceramide 1-phosphate/ceramide, a switch between life and death. , 2006, Biochimica et biophysica acta.

[50]  B. Ogretmen Sphingolipids in cancer: Regulation of pathogenesis and therapy , 2006, FEBS letters.

[51]  A. Bielawska,et al.  Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. , 2006, Methods.

[52]  S. Spiegel,et al.  Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling , 2005, Journal of Cell Science.

[53]  S. Summers,et al.  Acid Ceramidase Overexpression Prevents the Inhibitory Effects of Saturated Fatty Acids on Insulin Signaling* , 2005, Journal of Biological Chemistry.

[54]  K. Asanuma,et al.  Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner , 2005 .

[55]  O. Eickelberg,et al.  Caveolin-1 Facilitates Mechanosensitive Protein Kinase B (Akt) Signaling In Vitro and In Vivo , 2005, Circulation research.

[56]  K. Asanuma,et al.  Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. , 2005, The Journal of clinical investigation.

[57]  J. G. van den Berg,et al.  Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. , 2004, Kidney international.

[58]  F. Liu,et al.  Regulation of Insulin Action by Ceramide , 2004, Journal of Biological Chemistry.

[59]  Y. Igarashi,et al.  Ceramide Kinase Is a Mediator of Calcium-dependent Degranulation in Mast Cells* , 2004, Journal of Biological Chemistry.

[60]  S. Stratford Regulation of insulin action by ceramide : dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase , 2004 .

[61]  R. DeFronzo,et al.  Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. , 2004, Diabetes.

[62]  M. Lisanti,et al.  Role of caveolin and caveolae in insulin signaling and diabetes. , 2003, American journal of physiology. Endocrinology and metabolism.

[63]  R. Dobrowsky,et al.  A Role for Ceramide, but Not Diacylglycerol, in the Antagonism of Insulin Signal Transduction by Saturated Fatty Acids* , 2003, The Journal of Biological Chemistry.

[64]  L. Holzman,et al.  Podocyte‐specific expression of cre recombinase in transgenic mice , 2003, Genesis.

[65]  David S. Park,et al.  Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities* , 2002, The Journal of Biological Chemistry.

[66]  M. O'hare,et al.  A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. , 2002, Journal of the American Society of Nephrology : JASN.

[67]  C. Kahn,et al.  Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. , 2001, Molecular cell.

[68]  Philippe Soriano,et al.  Widespread recombinase expression using FLPeR (Flipper) mice , 2000, Genesis.

[69]  Y. Toya,et al.  Caveolin Is an Activator of Insulin Receptor Signaling* , 1998, The Journal of Biological Chemistry.

[70]  G. S. Montes,et al.  STRUCTURAL BIOLOGY OF THE FIBRES OF THE COLLAGENOUS AND ELASTIC SYSTEMS , 1996, Cell biology international.

[71]  O. Boudker,et al.  Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. , 1993, The Journal of biological chemistry.

[72]  D. O'sullivan,et al.  1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. , 1990, The Journal of biological chemistry.