A characterization of the single-crossing domain

We characterize single-crossing preference profiles in terms of two forbidden substructures, one of which contains three voters and six (not necessarily distinct) alternatives, and one of which contains four voters and four (not necessarily distinct) alternatives. We also provide an efficient way to decide whether a preference profile is single-crossing.

[1]  Fan-chin Kung,et al.  An Algorithm for Stable and Equitable Coalition Structures with Public Goods , 2005 .

[2]  Fernando A. Tohmé,et al.  Single-Crossing, Strategic Voting and the Median Choice Rule , 2006, Soc. Choice Welf..

[3]  Jean-Michel Grandmont,et al.  INTERMEDIATE PREFERENCES AND THE MAJORITY RULE , 1978 .

[4]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[5]  Piotr Faliszewski,et al.  Clone structures in voters' preferences , 2011, EC '12.

[6]  Paul Rothstein,et al.  Order restricted preferences and majority rule , 1990 .

[7]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[8]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[9]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[10]  Kevin Roberts,et al.  Voting over income tax schedules , 1977 .

[11]  Salvador Barberà,et al.  Author's Personal Copy Games and Economic Behavior Top Monotonicity: a Common Root for Single Peakedness, Single Crossing and the Median Voter Result , 2022 .

[12]  Frank Westhoff,et al.  Existence of equilibria in economies with a local public good , 1977 .

[13]  A. Hoffman,et al.  Totally-Balanced and Greedy Matrices , 1985 .

[14]  W. Sierpinski,et al.  Sur le probléme des courbes gauches en Topologie , 2022 .

[15]  Ken-ichi Inada THE SIMPLE MAJORITY DECISION RULE , 1969 .

[16]  James Abello The Weak Bruhat Order of SSigma, Consistent Sets, and Catalan Numbers , 1991, SIAM J. Discret. Math..

[17]  Alejandro Saporiti,et al.  Strategy-proofness and single-crossing , 2009 .

[18]  Guillaume Haeringer,et al.  A characterization of the single-peaked domain , 2011, Soc. Choice Welf..

[19]  Joshua S. Gans,et al.  Majority voting with single-crossing preferences , 1996 .

[20]  H. Moulin On strategy-proofness and single peakedness , 1980 .

[21]  Victor Reiner,et al.  Acyclic sets of linear orders via the Bruhat orders , 2008, Soc. Choice Welf..

[22]  G. Demange Intermediate Preferences and Stable Coalition Structures , 1994 .

[23]  Dennis Epple,et al.  Equilibrium and Local Redistribution in an Urban Economy when Households Differ in both Preferences and Incomes , 1998 .

[24]  Salvador Barberà,et al.  Centre de Referència en Economia Analítica Barcelona Economics Working Paper Series Working Paper n o 57 Choosing How to Choose : Self-Stable Majority Rules and Constitutions , 2004 .

[25]  Allan H. Meltzer,et al.  A Rational Theory of the Size of Government , 1981, Journal of Political Economy.