Coloring edges and vertices of graphs without short or long cycles

Vertex and edge colorability are two graph problems that are NP-hard in general. We show that both problems remain difficult even for graphs without short cycles, i.e., without cycles of length at most g for any particular value of g. On the contrary, for graphs without long cycles, both problems are shown to be solvable in poynomial time.

[1]  Wilfried Imrich,et al.  Explicit construction of regular graphs without small cycles , 1984, Comb..

[2]  Dimitrios M. Thilikos,et al.  Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..

[3]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[4]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[5]  Shin-Ichi Nakano,et al.  Edge-Coloring Partial k-Trees , 1996, J. Algorithms.

[6]  D. R. Woodall,et al.  Acyclic Colourings of Planar Graphs with Large Girth , 1999 .

[7]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[8]  Rong Luo,et al.  Edge Coloring of Embedded Graphs with Large Girth , 2003, Graphs Comb..

[9]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[10]  The Band , 1921 .

[11]  Dieter Rautenbach,et al.  On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree , 2004, SIAM J. Discret. Math..

[12]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..

[13]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[14]  Gerhard J. Woeginger,et al.  The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..

[15]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[16]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[17]  Owen J. Murphy,et al.  Computing independent sets in graphs with large girth , 1992, Discret. Appl. Math..

[18]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..