Large‐Scale Colloidal Synthesis of Non‐Stoichiometric Cu2ZnSnSe4 Nanocrystals for Thermoelectric Applications

Over 10 g of non-stoichiometric Cu(2) ZnSnSe(4) colloidal nanocrystals for thermoelectric applications are prepared after one single reaction. The obtained pellet made from the colloidal nanocrystals shows a peak ZT value of 0.44 at 450 °C, which is similar to those of state-of-the-art Cu(2) ZnSnSe(4) -based bulk materials at the same temperature.

[1]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[2]  Kun Li,et al.  Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. , 2012, Journal of the American Chemical Society.

[3]  Jordi Arbiol,et al.  Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. , 2012, Journal of the American Chemical Society.

[4]  M. Dresselhaus,et al.  Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites. , 2012, Nano letters.

[5]  Matthew J. Greaney,et al.  Synthesis and characterization of wurtzite-phase copper tin selenide nanocrystals. , 2012, Journal of the American Chemical Society.

[6]  A. Cabot,et al.  Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. , 2012, Journal of the American Chemical Society.

[7]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[8]  Yu‐Guo Guo,et al.  Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic|[ndash]|inorganic hybrid photodetectors , 2012 .

[9]  Z. Ren,et al.  Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. , 2011, Journal of the American Chemical Society.

[10]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[11]  Taeghwan Hyeon,et al.  Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. , 2011, Angewandte Chemie.

[12]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[13]  Wenqing Zhang,et al.  Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure , 2010 .

[14]  C. Karthik,et al.  Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. , 2010, ACS nano.

[15]  C. Klinke,et al.  ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. , 2010, ACS nano.

[16]  Clemens Burda,et al.  Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. , 2010, Journal of the American Chemical Society.

[17]  J. Arbiol,et al.  Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). , 2010, Journal of the American Chemical Society.

[18]  R. Brutchey,et al.  Synthesis of Metastable Wurtzite CuInSe2 Nanocrystals , 2010 .

[19]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[20]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[21]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[22]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[23]  I-Wei Chen,et al.  A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se) , 2009 .

[24]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[25]  Ayusman Sen,et al.  Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. , 2009, Small.

[26]  Fuqiang Huang,et al.  Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4 , 2009 .

[27]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[28]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[29]  Gang Chen,et al.  Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. , 2008, Nano letters.

[30]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[31]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[32]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[33]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[34]  C. Rincón,et al.  Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data , 2003 .

[35]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[36]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[37]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.