Synthesis of new poly(ether–urethane–urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation

[1]  I. Iran,et al.  Advances in synthetic optically active condensation polymers - A review , 2011 .

[2]  E. Abdollahi,et al.  Synthesis and characterization of hydrolysable poly(ether–urethane–urea)s derived from l-leucine anhydride cyclopeptide; a green synthetic method for monomer , 2010 .

[3]  I. Vroman,et al.  Biodegradable Polymers , 2009, Materials.

[4]  Charlotte K. Williams,et al.  Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews , 2008 .

[5]  M. Zrínyi,et al.  Novel amino acid-based polymers for pharmaceutical applications , 2007 .

[6]  H. Yeganeh,et al.  Synthesis and properties of novel biodegradable poly(ε‐caprolactone)/ poly(ethylene glycol)‐based polyurethane elastomers , 2007 .

[7]  Raju Adhikari,et al.  Recent developments in biodegradable synthetic polymers. , 2006, Biotechnology annual review.

[8]  K. Woodhouse,et al.  Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. , 2005, Biomaterials.

[9]  M. Lakouraj,et al.  Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers , 2005 .

[10]  Michael S Sacks,et al.  Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. , 2005, Biomaterials.

[11]  Sylwester Gogolewski,et al.  Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. , 2002, Journal of biomedical materials research.

[12]  M. Okada Chemical syntheses of biodegradable polymers , 2002 .

[13]  S. Gogolewski,et al.  In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ϵ-caprolactone and Pluronics® with various hydrophilicities , 2002 .

[14]  J. Santerre,et al.  Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. , 2001, Journal of biomedical materials research.

[15]  P. Nayak,et al.  Polymers from renewable resources. XIII. Interpenetrating polymer networks derived from castor oil–hexamethylene diisocyanate and polymethacrylamide , 2001 .

[16]  J. Santerre,et al.  Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. , 2001, Journal of biomedical materials research.

[17]  C. Pouton,et al.  A biodegradable multiblock co-polymer derived from an α,ω-bis(methylamino)peptide and an α,ω-bis(oxiranylmethyl)poly(ethylene glycol) , 2000 .

[18]  C. Pouton,et al.  A biodegradable multiblock co-polymer derived from an alpha, omega-bis(methylamino)peptide and an alpha, omega-bis(oxiranylmethyl)poly(ethylene glycol). , 2000, Journal of Controlled Release.

[19]  J. Seppälä,et al.  Hydrolysis of lactic acid based poly(ester‐urethane)s , 1998 .

[20]  G. Pkhakadze,et al.  Biodegradable polyurethanes , 1996 .

[21]  S. Gogolewski,et al.  Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane. , 1992, Journal of clinical periodontology.

[22]  J. Smedinga,et al.  Biodegradable lysine diisocyanate-based poly(glycolide-co-epsilon-caprolactone)-urethane network in artificial skin. , 1990, Biomaterials.