Acoustic VTI modeling using high-order finite differences

Two second-order wave equations for acoustic vertical transversely isotropic (VTI) media are transformed to six first-order coupled partial differential equations for a more straighforward numerical implementation of the derivatives. The resulting first-order equations have a more natural form for discretization by any finite-difference, pseudospectral, or finite-element method. I discretized the new equations by high-order finite differences and used synthetic seismograms and snapshots for anisotropic and isotropic cases. The relative merits of placing the source deep and close to a free surface are assessed, illustrating advantages of exciting the source inside or outside of a near-surface, thin, isotropic layer. Results show that traveltimes from deep seismic reflectors can remain virtually unaffected when near-surface isotropic layers are included in acoustic VTI media.

[1]  Tariq Alkhalifah,et al.  Velocity analysis for transversely isotropic media , 1995 .

[2]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[3]  Linbin Zhang,et al.  Shear waves in acoustic anisotropic media , 2004 .

[4]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[5]  Mrinal K. Sen,et al.  An implicit staggered‐grid finite‐difference method for seismic modelling , 2009 .

[6]  S. Hestholm,et al.  3D free‐boundary conditions for coordinate‐transform finite‐difference seismic modelling , 2002 .

[7]  J. Rector,et al.  An Acoustic Wave Equation For Modeling In Tilted TI Media , 2003 .

[8]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[9]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[10]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[11]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[12]  Ilya Tsvankin,et al.  Nonhyperbolic reflection moveout in anisotropic media , 1994 .

[13]  Tariq Alkhalifah,et al.  An acoustic wave equation for orthorhombic anisotropy , 2003 .

[14]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[15]  Manuel Kindelan,et al.  On the construction and efficiency of staggered numerical differentiators for the wave equation , 1990 .

[16]  L. Thomsen Weak elastic anisotropy , 1986 .

[17]  Tariq Alkhalifah,et al.  Acoustic approximations for processing in transversely isotropic media , 1998 .