Critical nodes in interdependent networks with deterministic and probabilistic cascading failures

We consider optimization problems of identifying critical nodes in coupled interdependent networks, that is, choosing a subset of nodes whose deletion causes the maximum network fragmentation (quantified by an appropriate metric) in the presence of deterministic or probabilistic cascading failure propagations. We use two commonly considered network fragmentation metrics: total number of disabled nodes and total number of disabled pair-wise connectivities. First, we discuss computational complexity issues and develop linear mixed integer programming (MIP) formulations for the corresponding optimization problems in the deterministic case. We then extend these problems to the case with probabilistic failure propagations using Conditional Value-at-Risk measure. We develop a scenario-based linear MIP model and propose an exact Markov chain-based algorithm to solve these problems. Finally, we perform a series of computational experiments on synthetic and semi-synthetic networks and discuss some interesting insights that illustrate the properties of the proposed models.

[1]  My T. Thai,et al.  Detecting Critical Nodes in Interdependent Power Networks for Vulnerability Assessment , 2013, IEEE Transactions on Smart Grid.

[2]  Jonas Johansson,et al.  An approach for modelling interdependent infrastructures in the context of vulnerability analysis , 2010, Reliab. Eng. Syst. Saf..

[3]  E A Leicht,et al.  Suppressing cascades of load in interdependent networks , 2011, Proceedings of the National Academy of Sciences.

[4]  Ian Dobson,et al.  Interdependent Risk in Interacting Infrastructure Systems , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[5]  Ian Dobson,et al.  Risk Assessment in Complex Interacting Infrastructure Systems , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[6]  My T. Thai,et al.  Precise structural vulnerability assessment via mathematical programming , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[7]  Daniel Bienstock,et al.  Optimal control of cascading power grid failures , 2011, IEEE Conference on Decision and Control and European Control Conference.

[8]  Konstantin Pavlikov,et al.  Improved formulations for minimum connectivity network interdiction problems , 2018, Comput. Oper. Res..

[9]  Barbara Drossel,et al.  Forest-fire model with immune trees , 1993 .

[10]  Barry J. Goodno,et al.  Interdependent Response of Networked Systems , 2007 .

[11]  Hamamache Kheddouci,et al.  The Critical Node Detection Problem in networks: A survey , 2018, Comput. Sci. Rev..

[12]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[13]  Dirk Helbing,et al.  Transient dynamics increasing network vulnerability to cascading failures. , 2007, Physical review letters.

[14]  S. Havlin,et al.  Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. , 2010, Physical review letters.

[15]  R. Rockafellar,et al.  The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .

[16]  Eric A. M. Luiijf,et al.  Empirical Findings on Critical Infrastructure Dependencies in Europe , 2009, CRITIS.

[17]  J. Mitchell,et al.  An interdependent layered network model for a resilient supply chain , 2014 .

[18]  Hooyeon Lee,et al.  Approximating low-dimensional coverage problems , 2011, SoCG '12.

[19]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[20]  Eduardo L. Pasiliao,et al.  Minimum vertex cover problem for coupled interdependent networks with cascading failures , 2014, Eur. J. Oper. Res..

[21]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[22]  Harry Eugene Stanley,et al.  Robustness of interdependent networks under targeted attack , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Min Ouyang,et al.  Review on modeling and simulation of interdependent critical infrastructure systems , 2014, Reliab. Eng. Syst. Saf..

[24]  Junshan Zhang,et al.  Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures, and Robustness , 2012, IEEE Transactions on Parallel and Distributed Systems.

[25]  Paulo P. Monteiro,et al.  Compact Models for Critical Node Detection in Telecommunication Networks , 2018, Electron. Notes Discret. Math..

[26]  Steven M. Rinaldi,et al.  Modeling and simulating critical infrastructures and their interdependencies , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[27]  Eduardo L. Pasiliao,et al.  Exact identification of critical nodes in sparse networks via new compact formulations , 2014, Optim. Lett..

[28]  Hans J. Herrmann,et al.  Towards designing robust coupled networks , 2011, Scientific Reports.

[29]  Min Ouyang,et al.  A methodological approach to analyze vulnerability of interdependent infrastructures , 2009, Simul. Model. Pract. Theory.

[30]  H. Stanley,et al.  Robustness of network of networks under targeted attack. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[32]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[33]  Cesar Ducruet,et al.  Inter-similarity between coupled networks , 2010, ArXiv.

[34]  H. Stanley,et al.  Networks formed from interdependent networks , 2011, Nature Physics.

[35]  Jeroen H. G. C. Rutten,et al.  Disconnecting graphs by removing vertices: a polyhedral approach , 2007 .

[36]  S. Buldyrev,et al.  Interdependent networks with identical degrees of mutually dependent nodes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  P. Krokhmal,et al.  Portfolio optimization with conditional value-at-risk objective and constraints , 2001 .

[38]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[39]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[40]  Jonathan Cole Smith,et al.  Exact interdiction models and algorithms for disconnecting networks via node deletions , 2012, Discret. Optim..

[41]  Liu Hong,et al.  Vulnerability analysis of interdependent infrastructure systems: A methodological framework , 2012 .

[42]  K. C. Kapur,et al.  Methodology for Assessing the Resilience of Networked Infrastructure , 2009, IEEE Systems Journal.

[43]  James P. Peerenboom,et al.  Identifying, understanding, and analyzing critical infrastructure interdependencies , 2001 .

[44]  Marco Di Summa,et al.  Branch and cut algorithms for detecting critical nodes in undirected graphs , 2012, Computational Optimization and Applications.

[45]  Barry J. Goodno,et al.  Seismic response of critical interdependent networks , 2007 .

[46]  Harry Eugene Stanley,et al.  Cascade of failures in coupled network systems with multiple support-dependent relations , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Eduardo L. Pasiliao,et al.  An integer programming framework for critical elements detection in graphs , 2014, J. Comb. Optim..

[48]  M. Amin Toward Secure and Resilient Interdependent Infrastructures , 2002 .

[49]  Madhav V. Marathe,et al.  Cascading failures in multiple infrastructures: From transportation to communication network , 2010, 2010 5th International Conference on Critical Infrastructure (CRIS).

[50]  Harry Eugene Stanley,et al.  Robustness of a Network of Networks , 2010, Physical review letters.

[51]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[52]  Richard G. Little,et al.  Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures , 2002 .

[53]  P. Bak,et al.  A forest-fire model and some thoughts on turbulence , 1990 .