Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data

Remote imaging spectroscopy in the 0.4–2.5-μm visible and shortwave infrared (VSWIR) range captures the majority of solar-reflected energy and enables a wide range of earth surface studies. This spectral range is also influenced by atmospheric effects including absorption from atmospheric gases and aerosols, Rayleigh scattering, and particle scattering. Globally consistent surface measurements must compensate for these atmospheric effects. This article reviews the physical and mathematical foundations of modern VSWIR atmospheric retrieval, focusing on imaging spectrometers. We assess sensitivity of the retrieval to errors in atmospheric state estimation. Finally, we describe some promising avenues of future research to support the next generation of orbital imaging spectrometers.

[1]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[2]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[3]  Ainong Li,et al.  An Improved Physics-Based Model for Topographic Correction of Landsat TM Images , 2015, Remote. Sens..

[4]  Y. Kaufman,et al.  Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space , 1995 .

[5]  Daniel Schläpfer,et al.  Operational BRDF Effects Correction for Wide-Field-of-View Optical Scanners (BREFCOR) , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[6]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[7]  Marcos J. Montes,et al.  Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique , 2004 .

[8]  Daniel Schläpfer,et al.  Combined Haze and Cirrus Removal for Multispectral Imagery , 2016, IEEE Geoscience and Remote Sensing Letters.

[9]  J. Dymond,et al.  Correcting satellite imagery for the variance of reflectance and illumination with topography , 2003 .

[10]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[11]  Thomas H. Painter,et al.  Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow , 2006 .

[12]  Shoko Kobayashi,et al.  The integrated radiometric correction of optical remote sensing imageries , 2008 .

[13]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[14]  H. Bovensmann,et al.  Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane , 2015 .

[15]  P. Deschamps,et al.  Influence of the atmosphere on space measurements of directional properties. , 1983, Applied optics.

[16]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[17]  E. LeDrew,et al.  Remote sensing of coral reefs and their physical environment. , 2004, Marine pollution bulletin.

[18]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Steve Ankuo Chien,et al.  Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015 , 2017 .

[20]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  Craig A. Coburn,et al.  SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Ivy Tan,et al.  Sensitivity Study on the Influence of Cloud Microphysical Parameters on Mixed-Phase Cloud Thermodynamic Phase Partitioning in CAM5 , 2016 .

[23]  Steve Ankuo Chien,et al.  Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution , 2005 – 2015 , 2017 .

[24]  Daniel Schläpfer,et al.  Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Steven Platnick,et al.  Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy , 2016 .

[26]  Yu Hen Hu,et al.  Optimal linear spectral unmixing , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  David R. Thompson,et al.  Imaging Spectroscopy BRDF Correction for Mapping Louisiana’s Coastal Ecosystems , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[28]  D. Roberts,et al.  Comparison of various techniques for calibration of AIS data , 1986 .

[29]  Daniel Schläpfer,et al.  Correction of ozone influence on TOA radiance , 2014 .

[30]  L. Gómez-Chova,et al.  Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land , 2008 .

[31]  Zheng Qu,et al.  HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  David R. Thompson,et al.  Space‐based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter , 2016 .

[33]  Karl Segl,et al.  Estimating the Influence of Spectral and Radiometric Calibration Uncertainties on EnMAP Data Products - Examples for Ground Reflectance Retrieval and Vegetation Indices , 2015, Remote. Sens..

[34]  David R. Thompson,et al.  Optimizing irradiance estimates for coastal and inland water imaging spectroscopy , 2015 .

[35]  Dominik Brunner,et al.  High-resolution NO₂ remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer , 2012 .

[36]  Ping Yang,et al.  An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data , 2002, IEEE Trans. Geosci. Remote. Sens..

[37]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[38]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[39]  Raphael M. Kudela,et al.  Remote sensing of phytoplankton functional types in the coastal ocean from the HyspIRI Preparatory Flight Campaign , 2015 .

[40]  Marsha Fox,et al.  Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery , 2012 .

[41]  Ming Liu,et al.  A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data , 2013, Sensors.

[42]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[43]  M. Dameris,et al.  Global long-term monitoring of the ozone layer – a prerequisite for predictions , 2009 .

[44]  Daniel Schläpfer,et al.  CORRECTION OF SHADOWING IN IMAGING SPECTROSCOPY DATA BY QUANTIFICATION OF THE PROPORTION OF DIFFUSE ILLUMINATION , 2013 .

[45]  Hermann Kaufmann,et al.  Comparison of Topographic Correction Methods , 2009, Remote. Sens..

[46]  Klaus I. Itten,et al.  A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain , 1997, IEEE Trans. Geosci. Remote. Sens..

[47]  Bruno Pelletier,et al.  Bayesian methodology for inverting satellite ocean-color data , 2015 .

[48]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[49]  D. Thompson,et al.  Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign , 2015 .

[50]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[51]  Daniel Schläpfer,et al.  APDA Water Vapor Retrieval Validation for Sentinel-2 Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[52]  B. Gao,et al.  Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data , 1995 .

[53]  C. Daughtry,et al.  Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes , 2003 .

[54]  David R. Thompson,et al.  Imaging spectrometer stray spectral response: In-flight characterization, correction, and validation , 2018 .

[55]  J. Cihlar,et al.  An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images , 2002 .

[56]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[57]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[58]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[59]  Anthony J. Ratkowski,et al.  Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery , 2005 .

[60]  D. Thompson,et al.  Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region , 2016, Proceedings of the National Academy of Sciences.

[61]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..

[62]  Jennifer P. Cannizzaro,et al.  Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters , 2006 .

[63]  Z. Ahmad,et al.  Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. , 2000, Applied optics.

[64]  D. Thompson,et al.  Optimal estimation for imaging spectrometer atmospheric correction , 2018, Remote Sensing of Environment.

[65]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[66]  Hirokazu Yamamoto,et al.  A Study on ASTER/MODIS Radiometric and Atmospheric Correction , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[67]  Michael E. Schaepman,et al.  Correction of Reflectance Anisotropy Effects of Vegetation on Airborne Spectroscopy Data and Derived Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Q. Fu,et al.  On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres , 1992 .

[69]  Y. Kaufman,et al.  Corection of thin cirrus path radiances in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel , 1998 .

[70]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[71]  M. V. Roozendael,et al.  High-resolution mapping of the NO 2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing , 2017 .

[72]  Andreas Hueni,et al.  An Algorithm for In-Flight Spectral Calibration of Imaging Spectrometers , 2016, Remote. Sens..

[73]  R. Fraser,et al.  The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[74]  M. V. Roozendael,et al.  High-resolution NO 2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer , 2012 .

[75]  David Riaño,et al.  Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) , 2003, IEEE Trans. Geosci. Remote. Sens..

[76]  Alan H. Strahler,et al.  The interrelationship of atmospheric correction of reflectances and surface BRDF retrieval: a sensitivity study , 1999, IEEE Trans. Geosci. Remote. Sens..

[77]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[78]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[79]  Daniel Schläpfer,et al.  SPECTRAL POLISHING OF HIGH RESOLUTION IMAGING SPECTROSCOPY DATA , 2011 .

[80]  L. Guanter,et al.  Spectral calibration of hyperspectral imagery using atmospheric absorption features. , 2006, Applied optics.

[81]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[82]  Robert O. Green,et al.  Estimation of aerosol optical depth, pressure elevation, water vapor, and calculation of apparent surface reflectance from radiance measured by the airborne visible/infrared imaging spectrometer (AVIRIS) using a radiative transfer code , 1993, Defense, Security, and Sensing.

[83]  P Mouroulis,et al.  Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. , 2000, Applied optics.

[84]  P. Deschamps,et al.  Influence of the background contribution upon space measurements of ground reflectance. , 1981, Applied optics.

[85]  R. Green,et al.  AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance , 1987 .

[86]  Carol J. Bruegge,et al.  In-situ atmospheric water-vapor retrieval in support of AVIRIS validation , 1990, Other Conferences.

[87]  Peter Reinartz,et al.  Haze Detection and Removal in Remotely Sensed Multispectral Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[88]  L. Guanter,et al.  Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data , 2007 .

[89]  Brian D. Bue,et al.  Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG , 2017 .

[90]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[91]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[92]  K. Carder,et al.  Satellite-sensor calibration verification with the cloud-shadow method. , 1998, Applied optics.