Counting occurrences of 231 in an involution

We study the generating function for the number of involutions on n letters containing exactly r>=0 occurrences of 231. It is shown that finding this function for a given r amounts to a routine check of all involutions of length at most 2r+2.

[1]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[2]  Aaron Robertson Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..

[3]  Rodica Simion,et al.  Restricted Permutations , 1985, Eur. J. Comb..

[5]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[6]  Dominique Gouyou-Beauchamps,et al.  Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..

[7]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[8]  Toufik Mansour,et al.  231-Avoiding involutions and Fibonacci numbers , 2002, Australas. J Comb..

[9]  T. Mansour,et al.  Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..

[10]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[11]  John Noonan The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..

[12]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[13]  M. Bóna,et al.  The Number of Permutations with Exactlyr132-Subsequences IsP-Recursive in the Size! , 1997 .

[14]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[15]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[17]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[18]  Aaron D. Jaggard Prefix Exchanging and Pattern Avoidance by Involutions , 2002, Electron. J. Comb..

[19]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[20]  Miklós Bóna,et al.  Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..

[21]  Toufik Mansour,et al.  Counting Occurrences of 132 in a Permutation , 2002, Adv. Appl. Math..

[22]  Noga Alon,et al.  On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.

[23]  Toufik Mansour,et al.  Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..

[24]  T. Mansour,et al.  Restricted permutations, continued fractions, and Chebyshev polynomials, Electron , 2008 .

[25]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[26]  Toufik Mansour,et al.  RESTRICTED 132-INVOLUTIONS , 2002 .

[27]  Aaron Robertson Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns , 1999 .

[28]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[29]  Toufik Mansour Counting occurrences of 132 in an even permutation , 2004, Int. J. Math. Math. Sci..

[30]  Toufik Mansour,et al.  Bivariate generating functions for involutions restricted by 3412 , 2006, Adv. Appl. Math..

[31]  Eric S. Egge Restricted 3412-avoiding involutions, continued fractions, and Chebyshev polynomials , 2004, Adv. Appl. Math..

[32]  Mikl6s B6na Permutations with one or two 132-subsequences , 2003 .

[33]  Markus Fulmek Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three , 2003, Adv. Appl. Math..