Counting occurrences of 231 in an involution
暂无分享,去创建一个
[1] Julian West,et al. Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..
[2] Aaron Robertson. Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..
[3] Rodica Simion,et al. Restricted Permutations , 1985, Eur. J. Comb..
[5] D. Zeilberger,et al. The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.
[6] Dominique Gouyou-Beauchamps,et al. Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..
[7] Ira M. Gessel,et al. Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.
[8] Toufik Mansour,et al. 231-Avoiding involutions and Fibonacci numbers , 2002, Australas. J Comb..
[9] T. Mansour,et al. Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..
[10] Julian West,et al. Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..
[11] John Noonan. The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..
[12] Miklós Bóna. Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.
[13] M. Bóna,et al. The Number of Permutations with Exactlyr132-Subsequences IsP-Recursive in the Size! , 1997 .
[14] Olivier Guibert,et al. Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .
[15] Zvezdelina Stankova,et al. Forbidden subsequences , 1994, Discret. Math..
[17] Amitai Regev,et al. Asymptotic values for degrees associated with strips of young diagrams , 1981 .
[18] Aaron D. Jaggard. Prefix Exchanging and Pattern Avoidance by Involutions , 2002, Electron. J. Comb..
[19] Olivier Guibert. Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .
[20] Miklós Bóna,et al. Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..
[21] Toufik Mansour,et al. Counting Occurrences of 132 in a Permutation , 2002, Adv. Appl. Math..
[22] Noga Alon,et al. On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.
[23] Toufik Mansour,et al. Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..
[24] T. Mansour,et al. Restricted permutations, continued fractions, and Chebyshev polynomials, Electron , 2008 .
[25] Zvezdelina Stankova. Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..
[26] Toufik Mansour,et al. RESTRICTED 132-INVOLUTIONS , 2002 .
[27] Aaron Robertson. Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns , 1999 .
[28] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[29] Toufik Mansour. Counting occurrences of 132 in an even permutation , 2004, Int. J. Math. Math. Sci..
[30] Toufik Mansour,et al. Bivariate generating functions for involutions restricted by 3412 , 2006, Adv. Appl. Math..
[31] Eric S. Egge. Restricted 3412-avoiding involutions, continued fractions, and Chebyshev polynomials , 2004, Adv. Appl. Math..
[32] Mikl6s B6na. Permutations with one or two 132-subsequences , 2003 .
[33] Markus Fulmek. Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three , 2003, Adv. Appl. Math..