The temporal structure of the inner retina at a single glance

The retina decomposes visual stimuli into parallel channels that encode different features of the visual environment. Central to this computation is the synaptic processing in a dense and thick layer of neuropil, the so-called inner plexiform layer (IPL). Here, different types of bipolar cells stratifying at distinct depths relay the excitatory feedforward drive from photoreceptors to amacrine and ganglion cells. Current experimental techniques for studying processing in the IPL do not allow imaging the entire IPL simultaneously in the intact tissue. Here, we extend a two-photon microscope with an electrically tunable lens allowing us to obtain optical vertical slices of the IPL, which provide a complete picture of the response diversity of bipolar cells at a “single glance”. The nature of these axial recordings additionally allowed us to isolate and investigate batch effects, i.e. inter-experimental variations resulting in systematic differences in response speed. As a proof of principle, we developed a simple model that disentangles biological from experimental causes of variability, and allowed us to recover the characteristic gradient of response speeds across the IPL with higher precision than before. Our new framework will make it possible to study the computations performed in the central synaptic layer of the retina more efficiently.

[1]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[2]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[3]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[4]  D. I. Vaney,et al.  ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[6]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[7]  H. Wässle,et al.  Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat Retina , 1996, The Journal of Neuroscience.

[8]  P. Lukasiewicz,et al.  Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. , 1998, Journal of neurophysiology.

[9]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[10]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[11]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[12]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[13]  F. Werblin,et al.  Parallel processing in the mammalian retina: lateral and vertical interactions across stacked representations. , 2001, Progress in brain research.

[14]  E. Strettoi,et al.  Retinal organization in the bcl‐2‐overexpressing transgenic mouse , 2002, The Journal of comparative neurology.

[15]  H. Wässle,et al.  Types of bipolar cells in the mouse retina , 2004, The Journal of comparative neurology.

[16]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[17]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[18]  S. DeVries,et al.  Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina , 2006, Nature Neuroscience.

[19]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[20]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[21]  Tony Wilson,et al.  Aberration-free optical refocusing in high numerical aperture microscopy. , 2007, Optics letters.

[22]  T. Sejnowski,et al.  A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity , 2007, PloS one.

[23]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[24]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[25]  H. Wässle,et al.  Receptive field properties of ON- and OFF-ganglion cells in the mouse retina , 2009, Visual Neuroscience.

[26]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[27]  L. Lagnado,et al.  Computational processing of optical measurements of neuronal and synaptic activity in networks , 2010, Journal of Neuroscience Methods.

[28]  Erika D Eggers,et al.  Multiple pathways of inhibition shape bipolar cell responses in the retina , 2010, Visual Neuroscience.

[29]  Benjamin F. Grewe,et al.  Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens , 2011, Biomedical optics express.

[30]  M. Blum,et al.  Compact optical design solutions using focus tunable lenses , 2011, Optical Systems Design.

[31]  Tobias Breuninger,et al.  Chromatic Bipolar Cell Pathways in the Mouse Retina , 2011, The Journal of Neuroscience.

[32]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[33]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[34]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[35]  Fritjof Helmchen,et al.  Online correction of licking‐induced brain motion during two‐photon imaging with a tunable lens , 2013, The Journal of physiology.

[36]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[37]  M. Bethge,et al.  Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina , 2013, Current Biology.

[38]  Benjamin Schmid,et al.  Rapid 3D light-sheet microscopy with a tunable lens. , 2013, Optics express.

[39]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[40]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[41]  D. Fitzpatrick,et al.  Three-dimensional mapping of microcircuit correlation structure , 2013, Front. Neural Circuits.

[42]  R. Silver,et al.  Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope , 2014, Journal of Neuroscience Methods.

[43]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[44]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[45]  Rodrigo Cuenca,et al.  Optical axial scanning in confocal microscopy using an electrically tunable lens. , 2014, Biomedical optics express.

[46]  Benjamin Schmid,et al.  High-resolution reconstruction of the beating zebrafish heart , 2014, Nature Methods.

[47]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[48]  Rebecca A. B. Burton,et al.  Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen , 2014, Front. Physiol..

[49]  Ryuichi Tanimoto,et al.  High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes. , 2015, The Review of scientific instruments.

[50]  Enrico Gratton,et al.  Electrically tunable lens speeds up 3D orbital tracking. , 2015, Biomedical optics express.

[51]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[52]  Alexander S. Ecker,et al.  DataJoint: managing big scientific data using MATLAB or Python , 2015, bioRxiv.

[53]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[55]  Adi Schejter Bar-Noam,et al.  Correction-free remotely scanned two-photon in vivo mouse retinal imaging , 2016, Light: Science & Applications.

[56]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[57]  H. Sebastian Seung,et al.  Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation , 2016, Cell reports.

[58]  Philipp Berens,et al.  Connectivity map of bipolar cells and photoreceptors in the mouse retina , 2016, bioRxiv.

[59]  J. Diamond Inhibitory Interneurons in the Retina: Types, Circuitry, and Function. , 2017, Annual review of vision science.

[60]  Jennifer J. Hunter,et al.  Multiphoton imaging of the retina , 2017 .

[61]  M. Hayhoe Vision and Action. , 2017, Annual review of vision science.

[62]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[63]  Philipp Berens,et al.  Die Retina im Rausch der Kanäle , 2017, Klinische Monatsblätter für Augenheilkunde.

[64]  Markus Meister,et al.  Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures , 2017, PloS one.

[65]  Naoko Omi,et al.  Classification of Mouse Retinal Bipolar Cells: Type-Specific Connectivity with Special Reference to Rod-Driven AII Amacrine Pathways , 2017, Front. Neuroanat..

[66]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[67]  Nishal P. Shah,et al.  Unusual Physiological Properties of Smooth Monostratified Ganglion Cell Types in Primate Retina , 2019, Neuron.

[68]  Katrin Franke,et al.  An arbitrary-spectrum spatial visual stimulator for vision research , 2019, bioRxiv.

[69]  Thomas Euler,et al.  Studying a Light Sensor with Light: Multiphoton Imaging in the Retina , 2019 .