On the classification of perfect codes: Extended side class structures

The two 1-error correcting perfect binary codes, C and C^' are said to be equivalent if there exists a permutation @p of the set of the n coordinate positions and a word d@? such that C^'=@p(d@?+C). Hessler defined C and C^' to be linearly equivalent if there exists a non-singular linear map @f such that C^'=@f(C). Two perfect codes C and C^' of length n will be defined to be extended equivalent if there exists a non-singular linear map @f and a word d@? such that C^'=@f(d@?+C). Heden and Hessler, associated with each linear equivalence class an invariant L"C and this invariant was shown to be a subspace of the kernel of some perfect code. It is shown here that, in the case of extended equivalence, the corresponding invariant will be the extension of the code L"C. This fact will be used to give, in some particular cases, a complete enumeration of all extended equivalence classes of perfect codes.

[1]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[2]  Kevin T. Phelps,et al.  On Perfect Codes: Rank and Kernel , 2002, Des. Codes Cryptogr..

[3]  Olof Heden,et al.  Perfect codes from the dual point of view I , 2008, Discret. Math..

[4]  Sergey V. Avgustinovich,et al.  On the Ranks and Kernels Problem for Perfect Codes , 2003, Probl. Inf. Transm..

[5]  Patric R. J. Östergård,et al.  The Perfect Binary One-Error-Correcting Codes of Length $15$: Part I—Classification , 2008, IEEE Transactions on Information Theory.

[6]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[7]  Olof Heden A Full Rank Perfect Code of Length 31 , 2006, Des. Codes Cryptogr..

[8]  Ferdinand Hergert Algebraische Methoden für nichtlineare Codes , 1985 .

[9]  Martin Hessler Perfect codes as isomorphic spaces , 2006, Discret. Math..

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Martin Hessler A computer study of some 1-error correcting perfect binary codes , 2005, Australas. J Comb..

[12]  Victor Zinoviev,et al.  Binary extended perfect codes of length 16 and rank 14 , 2006, Probl. Inf. Transm..

[13]  Olof Heden,et al.  On the classification of perfect codes: side class structures , 2006, Des. Codes Cryptogr..

[14]  Victor Zinoviev,et al.  Binary Perfect Codes of Length 15 by the Generalized Concatenated Construction , 2004, Probl. Inf. Transm..

[15]  Victor Zinoviev,et al.  Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction , 2002, Probl. Inf. Transm..

[16]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..