Magnetism Science with the Square Kilometre Array

The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.

[1]  UCSD,et al.  Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56 , 2004 .

[2]  H. Junklewitz,et al.  Source finding in linear polarization for LOFAR, and SKA predecessor surveys, using Faraday moments , 2017, 1711.04516.

[3]  Hemispheric Handedness in the Galactic Synchrotron Polarization Foreground , 2020, 2003.14178.

[4]  Justin Jonas,et al.  The MeerKAT Radio Telescope , 2018 .

[5]  B. Burn On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .

[6]  T. Ensslin,et al.  Using rotation measure grids to detect cosmological magnetic fields: A Bayesian approach , 2015, 1509.00747.

[7]  Dominik Bomans,et al.  Structure, dynamical impact and origin of magnetic fields in nearby galaxies in the SKA era , 2015, 1501.00385.

[8]  F. Vazza,et al.  Resolved magnetic dynamo action in the simulated intracluster medium , 2017, 1711.02673.

[9]  A. Shukurov,et al.  THE PARKER INSTABILITY IN DISK GALAXIES , 2015, 1510.06318.

[10]  L. Rudnick,et al.  Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA , 2015 .

[11]  Marco Padovani,et al.  Synchrotron emission in molecular cloud cores: the SKA view , 2018, Astronomy & Astrophysics.

[12]  I. Prandoni,et al.  Revealing the Physics and Evolution of Galaxies and Galaxy Clusters with SKA Continuum Surveys , 2014, 1412.6512.

[13]  J. Stil,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THREE-DIMENSIONAL SIMULATIONS OF MAGNETIZED SUPERBUBBLES: NEW INSIGHTS INTO THE IMPORTANCE OF MHD EFFECTS ON OBSERVED QUANTITIES , 2022 .

[14]  Marita Krause,et al.  Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array , 2008, 0810.3114.

[15]  Ilana J. Feain,et al.  Galactic magnetic deflections and Centaurus A as a UHECR source , 2012, 1211.7086.

[16]  Ed Elson,et al.  Synthesizing Observations and Theory to Understand Galactic Magnetic Fields: Progress and Challenges , 2019, Galaxies.

[17]  James M. Stone,et al.  Nonideal MHD Simulation of HL Tau Disk: Formation of Rings , 2019, The Astrophysical Journal.

[18]  Steven Furlanetto,et al.  Intergalactic Magnetic Fields from Quasar Outflows , 2001 .

[19]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[20]  Shu-ichiro Inutsuka,et al.  From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation , 2013, 1312.6232.

[21]  Matthew Kerr,et al.  Discovery of Millisecond Pulsars in the Globular Cluster Omega Centauri , 2019 .

[22]  Felix J. Lockman,et al.  Constraining the Magnetic Field of the Smith High-velocity Cloud Using Faraday Rotation , 2018, The Astrophysical Journal.

[23]  M. Tahani,et al.  Helical magnetic fields in molecular clouds? , 2018, Astronomy & Astrophysics.

[24]  A. Scaife,et al.  Magnetic Field Tomography in Nearby Galaxies with the Square Kilometre Array , 2015, 1501.00408.

[25]  D. Gabuzda,et al.  The jets of AGN as giant coaxial cables , 2017, 1712.08414.

[26]  Fernando Camilo,et al.  African star joins the radio astronomy firmament , 2018, Nature Astronomy.

[27]  Zhi-Yun Li,et al.  The Role of Magnetic Fields in the Formation of Protostellar Discs , 2018, Front. Astron. Space Sci..

[28]  James R. Curran,et al.  blobcat: software to catalogue flood‐filled blobs in radio images of total intensity and linear polarization , 2012, 1205.5313.

[29]  Anthony Allen,et al.  A Unified Model for Bipolar Outflows from Young Stars , 2006, The Astrophysical Journal.

[30]  Federico Marinacci,et al.  Cosmological simulations of galaxy formation , 2019 .

[31]  R. Beck,et al.  Magnetic fields in spiral galaxies , 1990, 1509.04522.

[32]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[33]  R. B. Wayth,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey II: Galactic plane 345° < l < 67°, 180° < l < 240° , 2019, Publications of the Astronomical Society of Australia.

[34]  The University of Manchester,et al.  Reliable detection and characterization of low-frequency polarized sources in the LOFAR M51 field , 2018, Astronomy & Astrophysics.

[35]  M. Drinkwater,et al.  Constructing the Universe with Clusters of Galaxies , 2000 .

[36]  Tom Oosterloo,et al.  Continuum Halos in Nearby Galaxies : An EVLA Survey (CHANG-ES). II. First Results on NGC 4631 , 2012 .

[37]  J. M. Dickey,et al.  GMIMS: the Global Magneto-Ionic Medium Survey , 2008, Proceedings of the International Astronomical Union.

[38]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[39]  H. Andernach,et al.  Differences in Faraday Rotation between Adjacent Extragalactic Radio Sources as a Probe of Cosmic Magnetic Fields , 2019, The Astrophysical Journal.

[40]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.

[41]  V. Smolcic,et al.  The XXL Survey , 2019 .

[42]  M. Johnston-Hollitt,et al.  Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster , 2020 .

[43]  Satoshi Okuzumi,et al.  Temperature Structure in the Inner Regions of Protoplanetary Disks: Inefficient Accretion Heating Controlled by Nonideal Magnetohydrodynamics , 2019, The Astrophysical Journal.

[44]  Peter Frick,et al.  Measuring magnetism in the Milky Way with the Square Kilometre Array , 2015 .

[45]  G. Brunetti,et al.  The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.

[46]  Sharanya Sur,et al.  Faraday rotation signatures of fluctuation dynamos in young galaxies , 2017, 1711.08865.

[47]  L. Verdes-Montenegro,et al.  An Overview of the MHONGOOSE Survey: Observing Nearby Galaxies with MeerKAT , 2017, 1709.08458.

[48]  Gabriele Giovannini,et al.  Mega-parsec scale magnetic fields in low density regions in the SKA era: filaments connecting galaxy clusters and groups , 2015 .

[49]  V Vacca,et al.  Simulations of the polarized radio sky and predictions on the confusion limit in polarization for future radio surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[50]  R. Lynch,et al.  An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102 , 2018, Nature.

[51]  Shu-ichiro Inutsuka,et al.  The Role of Magnetic Field in Molecular Cloud Formation and Evolution , 2019, Front. Astron. Space Sci..

[52]  Timothy Robishaw,et al.  Detection of an ∼20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies , 2016, 1609.04266.

[53]  Tao An,et al.  SKA data take centre stage in China , 2019, Nature Astronomy.

[54]  California Institute of Technology,et al.  Dispersion of Magnetic Fields in Molecular Clouds , 2008 .

[55]  Melanie Johnston-Hollitt,et al.  An improved method for polarimetric image restoration in interferometry , 2016, 1606.01482.

[56]  G. Brunetti,et al.  Stochastic reacceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission? , 2016, 1603.00458.

[57]  Shea Brown,et al.  INTEGRATED POLARIZATION OF SOURCES AT λ ∼ 1 m AND NEW ROTATION MEASURE AMBIGUITIES , 2011, 1103.4149.

[58]  M. Regis,et al.  Local Group dSph radio survey with ATCA (III): constraints on particle dark matter , 2014, 1407.4948.

[59]  G. Brunetti,et al.  Cluster magnetic fields through the study of polarized radio halos in the SKA era , 2015, 1501.00389.

[60]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[61]  M. Jarvis,et al.  Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , 2015 .

[62]  G. Ferrand,et al.  The connection between supernova remnants and the Galactic magnetic field: An analysis of quasi-parallel and quasi-perpendicular cosmic ray acceleration for the axisymmetric sample , 2016 .

[63]  Bryan M. Gaensler,et al.  Survey Science with ASKAP: Polarization Sky Survey of the Universe's Magnetism (POSSUM) , 2010 .

[64]  Michiel A. Brentjens,et al.  Polarization Imaging with LOFAR , 2018 .

[65]  Christoph Federrath,et al.  The role of initial magnetic field structure in the launching of protostellar jets , 2019, Monthly Notices of the Royal Astronomical Society.

[66]  Timothy Robishaw,et al.  Magnetic fields in forming stars with the ngVLA , 2018 .

[67]  K. A. Douglas,et al.  FARADAY TOMOGRAPHY OF THE NORTH POLAR SPUR: CONSTRAINTS ON THE DISTANCE TO THE SPUR AND ON THE MAGNETIC FIELD OF THE GALAXY , 2015, 1508.03889.

[68]  F. Poidevin,et al.  Analysis of Galactic molecular cloud polarization maps: a review of the methods , 2019, EPJ Web of Conferences.

[69]  S. S. Sridhar,et al.  cuFFS: A GPU-accelerated code for Fast Faraday rotation measure Synthesis , 2018, Astron. Comput..

[70]  R. Karuppusamy,et al.  MeerTime - the MeerKAT Key Science Program on Pulsar Timing , 2018, 1803.07424.

[71]  G. C. Bower,et al.  The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science case, survey design and initial results , 2014 .

[72]  Juan D. Soler,et al.  Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure (Corrigendum) , 2019, Astronomy & Astrophysics.

[73]  J. F. Kaczmarek,et al.  Detection of a coherent magnetic field in the Magellanic Bridge through Faraday rotation , 2017, 1701.05962.

[74]  Simon J. Lilly,et al.  Strong magnetic fields in normal galaxies at high redshift , 2008, Nature.

[75]  S. Spangler,et al.  A Faraday Rotation Study of the Stellar Bubble and H ii Region Associated with the W4 Complex , 2018, The Astrophysical Journal.

[76]  Marijke Haverkorn,et al.  Magnetically aligned straight depolarization canals and the rolling Hough transform , 2018, Astronomy & Astrophysics.

[77]  Michael McDonald,et al.  Discovery of a Powerful >1061 erg AGN Outburst in the Distant Galaxy Cluster SPT-CLJ0528-5300 , 2019 .

[78]  M. Johnston-Hollitt,et al.  MAGNETIC FIELDS IN CLUSTERS OF GALAXIES , 2004, astro-ph/0409462.

[79]  B. M. Gaensler,et al.  PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS , 2011, 1111.3544.

[80]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[81]  Jean-Baptiste Durrive,et al.  Magnetizing the Cosmic Web during Reionization , 2018, Galaxies.

[82]  C. A. Hales Calibration Errors in Interferometric Radio Polarimetry , 2017 .

[83]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[84]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[85]  M. R. Bell,et al.  Improved CLEAN reconstructions for rotation measure synthesis with maximum likelihood estimation , 2012, 1211.5105.

[86]  Cathryn M. Trott,et al.  The Phase II Murchison Widefield Array: Design overview , 2018, Publications of the Astronomical Society of Australia.

[87]  Dominic Schnitzeler,et al.  Finding a complex polarized signal in wide-band radio data , 2018 .

[88]  Shane O'Sullivan,et al.  Broadband Polarimetry with the Square Kilometre Array: A Unique Astrophysical Probe , 2015 .

[89]  Brandon S. Hensley,et al.  Mapping the Magnetic Interstellar Medium in Three Dimensions over the Full Sky with Neutral Hydrogen , 2019 .

[90]  K. Golap,et al.  Wide-field wide-band Interferometric Imaging: The WB A-Projection and Hybrid Algorithms , 2013 .

[91]  C Horellou,et al.  New constraints on the magnetization of the cosmic web using LOFAR Faraday rotation observations , 2020, Monthly Notices of the Royal Astronomical Society.

[92]  Melanie Johnston-Hollitt,et al.  Wide-band Rotation Measure Synthesis , 2019, The Astrophysical Journal.

[93]  N. Seymour,et al.  Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey , 2020, 2003.06104.

[94]  G. Bernardi,et al.  S–PASS view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations , 2018, Astronomy & Astrophysics.

[95]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[96]  R. Manchester,et al.  Pulsar Rotation Measures and Large-scale Magnetic Field Reversals in the Galactic Disk , 2017, 1712.01997.

[97]  F. O. Alves,et al.  Polarized emission by aligned grains in the Mie regime: Application to protoplanetary disks observed by ALMA , 2020, Astronomy & Astrophysics.

[98]  Astrophysics,et al.  Low-frequency Faraday rotation measures towards pulsars using LOFAR: probing the 3D Galactic halo magnetic field , 2019, Monthly Notices of the Royal Astronomical Society.

[99]  A. Melis,et al.  Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope , 2018, Monthly Notices of the Royal Astronomical Society.

[100]  Klaus Dolag Properties of Simulated Magnetized Galaxy Clusters , 2000 .

[101]  Melanie Johnston-Hollitt,et al.  SKA Deep Polarization and Cosmic Magnetism , 2015 .

[102]  松本 仁,et al.  Cosmic Magnetic Fields : from Planets, to Stars and Galaxies , 2009 .

[103]  Cambridge,et al.  Observations of magnetic fields in the Milky Way and in nearby galaxies with a Square Kilometre Array , 2004, astro-ph/0409368.

[104]  R. B. Barreiro,et al.  On the detection of CMB B-modes from ground at low frequency , 2020, Journal of Cosmology and Astroparticle Physics.

[105]  Claire J. Chandler,et al.  The Jansky-Very Large Array Sky Survey (VLASS) , 2014 .

[106]  O. Wucknitz,et al.  Detection of microgauss coherent magnetic fields in a galaxy five billion years ago , 2017, 1708.07844.

[107]  John D. Bunton,et al.  The Extraordinary Linear Polarisation Structure of the Southern Centaurus A Lobe Revealed by ASKAP , 2018, Galaxies.

[108]  G. Bernardi,et al.  Limiting magnetic fields in the cosmic web with diffuse radio emission , 2017, 1703.07829.

[109]  D. R. Lorimer,et al.  A decade of fast radio bursts , 2018, Nature Astronomy.

[110]  K. Subramanian,et al.  The origin, evolution and signatures of primordial magnetic fields , 2015, Reports on progress in physics. Physical Society.

[111]  J. Stil,et al.  DEGREE OF POLARIZATION AND SOURCE COUNTS OF FAINT RADIO SOURCES FROM STACKING POLARIZED INTENSITY , 2014, 1404.1859.

[112]  Bryan M. Gaensler,et al.  Analytic detection thresholds for measurements of linearly polarized intensity using rotation measure synthesis , 2012, 1205.5310.

[113]  Mami Machida,et al.  Workshop Summary “The Power of Faraday Tomography” , 2019, Galaxies.

[114]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[115]  Dieter Horns,et al.  Probing The Nature Of Dark Matter With The SKA , 2015, 1502.03738.

[116]  M. Johnston-Hollitt,et al.  Using Tailed Radio Galaxies to Probe the Environment and Magnetic Field of Galaxy Clusters in the SKA Era , 2015 .

[117]  M. L. Norman,et al.  Polarization of cluster radio halos with upcoming radio interferometers , 2013, 1304.6260.

[118]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[119]  Yuri Levin,et al.  Conversion Measure of Faraday Rotation–Conversion with Application to Fast Radio Bursts , 2019, The Astrophysical Journal.

[120]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[121]  H. Rottgering,et al.  Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog , 2018, 1801.04467.

[122]  E Carretti,et al.  S-band Polarization All-Sky Survey (S-PASS): survey description and maps , 2008, Monthly Notices of the Royal Astronomical Society.

[123]  J. Conway,et al.  The nature of the low-frequency emission of M 51 , 2014, Astronomy &amp; Astrophysics.

[124]  Sui Ann Mao,et al.  DENSER SAMPLING OF THE ROSETTE NEBULA WITH FARADAY ROTATION MEASUREMENTS: IMPROVED ESTIMATES OF MAGNETIC FIELDS IN H ii REGIONS , 2015, 1510.04664.

[125]  George Heald,et al.  Resolved magnetic structures in the disk-halo interface of NGC 628 , 2017, 1701.04829.

[126]  T. L. Landecker,et al.  The Connection between Supernova Remnants and the Galactic Magnetic Field: A Global Radio Study of the Axisymmetric Sample , 2015, 1510.08536.

[127]  Aritra Basu,et al.  CMB foreground measurements through broad-band radio spectro-polarimetry: prospects of the SKA-MPG telescope , 2019, Monthly Notices of the Royal Astronomical Society.

[128]  J. Anderson,et al.  Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes , 2013, 1303.6230.

[129]  P. Freire,et al.  Constraints from globular cluster pulsars on the magnetic field in the Galactic halo , 2020, 2003.02867.

[130]  C. Pfrommer,et al.  The impact of magnetic fields on cold streams feeding galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[131]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[132]  A. R. Whitney,et al.  Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array , 2015, 1506.01798.

[133]  G. Pisano,et al.  The QUIJOTE Experiment: Prospects for CMB B-MODE polarization detection and foregrounds characterization , 2018 .

[134]  C. Baugh,et al.  Evolution of galactic magnetic fields , 2018, Monthly Notices of the Royal Astronomical Society.

[135]  C. Burigana,et al.  Diffuse radio emission from the intracluster medium , 2004 .

[136]  T. L. Landecker,et al.  The Galactic Magneto-ionic Medium Survey: Moments of the Faraday Spectra , 2018, The Astrophysical Journal.

[137]  California Institute of Technology,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. III. , 2011 .

[138]  R. Klessen,et al.  THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS , 2012, 1209.2856.

[139]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[140]  Sergio Colafrancesco,et al.  Dark matter in the Reticulum II dSph: a radio search , 2017, 1703.09921.

[141]  A. Taylor,et al.  The Global Magneto-Ionic Medium Survey: Polarimetry of the Southern Sky from 300 to 480 MHz , 2019, The Astronomical Journal.

[142]  Dongsu Ryu,et al.  Statistical Techniques for Detecting the Intergalactic Magnetic Field from Large Samples of Extragalactic Faraday Rotation Data , 2014 .

[143]  J M Anderson,et al.  Testing the accuracy of the ionospheric Faraday rotation corrections through LOFAR observations of bright northern pulsars , 2018, Monthly Notices of the Royal Astronomical Society.

[144]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[145]  D. O. Astronomy,et al.  The Westerbork SINGS survey - II Polarization, Faraday rotation, and magnetic fields , 2009, 0905.3995.

[146]  Jin-lin Han,et al.  Observing Interstellar and Intergalactic Magnetic Fields , 2017 .

[147]  N. Hurley-Walker,et al.  De-distorting ionospheric effects in the image plane , 2018, Astron. Comput..

[148]  Carl Heiles,et al.  Magnetic Fields in the Multiphase Interstellar Medium , 2012 .

[149]  T. Ensslin,et al.  Using SKA rotation measures to reveal the mysteries of the magnetised universe , 2015, 1506.00808.

[150]  Alexandre Marcowith,et al.  Non-thermal emission from cosmic rays accelerated in H II regions , 2019, Astronomy & Astrophysics.

[151]  M. I. Large,et al.  SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1999 .

[152]  Lawrence Rudnick,et al.  THE DISTRIBUTION OF POLARIZED RADIO SOURCES >15 μJy IN GOODS-N , 2014, 1402.3637.

[153]  H. Rottgering,et al.  Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342* , 2016, 1612.00710.

[154]  J. M. Stil,et al.  Stacking for Cosmic Magnetism with SKA Surveys , 2015 .

[155]  Cormac Purcell,et al.  Classifying Complex Faraday Spectra with Convolutional Neural Networks , 2017, Monthly Notices of the Royal Astronomical Society.

[156]  Haiyang Li,et al.  Rotation measure synthesis applied to synthetic SKA images of galaxy clusters , 2019, Monthly Notices of the Royal Astronomical Society.

[157]  M. Pshirkov,et al.  New Limits on Extragalactic Magnetic Fields from Rotation Measures. , 2015, Physical review letters.

[158]  S. J. Tingay,et al.  Science with the Murchison Widefield Array: Phase I results and Phase II opportunities , 2019, Publications of the Astronomical Society of Australia.

[159]  Y. Wang,et al.  Strong Excess Faraday Rotation on the Inside of the Sagittarius Spiral Arm , 2019, The Astrophysical Journal.

[160]  Claudio Gheller,et al.  Filaments of the radio cosmic web: opportunities and challenges for SKA , 2015, 1501.00315.

[161]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE , 2016, 1607.05779.

[162]  Hiroshi Imai,et al.  Measuring magnetic fields near and far with the SKA via the zeeman effect , 2015 .

[163]  Ralph E. Pudritz,et al.  The Role of Magnetic Fields in Protostellar Outflows and Star Formation , 2019, Front. Astron. Space Sci..

[164]  D. A. Rafferty,et al.  Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR , 2018, Astronomy & Astrophysics.

[165]  Anna Bonaldi,et al.  Square Kilometre Array Science Data Challenge 1. , 2018, 1811.10454.

[166]  B. M. Gaensler,et al.  FARADAY ROTATION FROM MAGNESIUM II ABSORBERS TOWARD POLARIZED BACKGROUND RADIO SOURCES , 2014, 1406.2526.

[167]  Torsten A. Ensslin,et al.  Information field theory for cosmological perturbation reconstruction and non-linear signal analysis , 2008, ArXiv.

[168]  J. D. Soler,et al.  Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.

[169]  Lisa Harvey-Smith,et al.  Estimating extragalactic Faraday rotation , 2014, 1404.3701.

[170]  N. Razavi-Ghods,et al.  Investigation of the cosmic ray population and magnetic field strength in the halo of NGC 891 , 2018, Astronomy & Astrophysics.

[171]  B. M. Gaensler,et al.  Broad-band radio circular polarization spectrum of the relativistic jet in PKS B2126-158 , 2013, 1307.5121.

[172]  M. Jamrozy,et al.  Exploring the properties of low-frequency radio emission and magnetic fields in a sample of compact galaxy groups using the LOFAR Two-Metre Sky Survey (LoTSS) , 2018, Astronomy & Astrophysics.

[173]  Christoph Federrath,et al.  Through thick or thin: multiple components of the magneto-ionic medium towards the nearby H ii region Sharpless 2–27 revealed by Faraday tomography , 2019, Monthly Notices of the Royal Astronomical Society.

[174]  C. Gheller,et al.  Probing the origin of extragalactic magnetic fields with Fast Radio Bursts , 2018, Monthly Notices of the Royal Astronomical Society.

[175]  Gabriele Giovannini,et al.  Magnetic Fields in Galaxy Clusters and in the Large-Scale Structure of the Universe , 2018, Galaxies.

[176]  Aritra Basu,et al.  An In-depth Investigation of Faraday Depth Spectrum Using Synthetic Observations of Turbulent MHD Simulations , 2019, Galaxies.

[177]  Jaume Sanz,et al.  Improvement of global ionospheric VTEC maps by using kriging interpolation technique , 2005 .

[178]  George Heald,et al.  Synchrotron Radiation and Faraday Rotation , 2015 .

[179]  Ravi Subrahmanyan,et al.  Magnetic field near the central region of the Galaxy: rotation measure of extragalactic sources , 2008 .

[180]  V. Heesen,et al.  Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER , 2018, 1801.05211.

[181]  A. Hopkins,et al.  Science with ASKAP , 2008, 0810.5187.

[182]  G. Brunetti,et al.  Low-frequency observations of the Giant Radio Galaxy NGC 6251 , 2020, Monthly Notices of the Royal Astronomical Society.

[183]  Francesco Miniati,et al.  Primordial magnetic field constraints from the end of reionization , 2011, 1108.1874.

[184]  Jinlong Xu,et al.  Magnetic fields in the solar vicinity and in the Galactic halo , 2019, Monthly Notices of the Royal Astronomical Society.

[185]  Christoph Federrath,et al.  The role of turbulence, magnetic fields and feedback for star formation , 2016, 1606.03121.

[186]  Hiroyuki Tashiro,et al.  Thermal Sunyaev–Zel’dovich Effect in the IGM due to Primordial Magnetic Fields , 2018, Galaxies.

[187]  J. Stil,et al.  A ROTATION MEASURE IMAGE OF THE SKY , 2009 .

[188]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[189]  J. R. Dawson,et al.  An ultra-wide bandwidth (704 to 4032 MHz) receiver for the Parkes radio telescope , 2019 .

[190]  Dongsu Ryu,et al.  The First Magnetic Fields , 1999, astro-ph/9912260.

[191]  Shane O'Sullivan,et al.  Studies of Relativistic Jets in Active Galactic Nuclei with SKA , 2015, 1501.00420.

[192]  D. A. Mitchell,et al.  The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array , 2017, Publications of the Astronomical Society of Australia.

[193]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[194]  E. Falgarone,et al.  The Intermittency of ISM Turbulence: What Do the Observations Tell Us? , 2015 .

[195]  Jason E. Kooi,et al.  VLA Measurements of Faraday Rotation through Coronal Mass Ejections , 2015 .

[196]  Tom Oosterloo,et al.  CONTINUUM HALOS IN NEARBY GALAXIES: AN EVLA SURVEY (CHANG-ES). I. INTRODUCTION TO THE SURVEY , 2012, 1205.5694.

[197]  E. O. Ofek,et al.  Fast Transients at Cosmological Distances with the SKA , 2015, 1501.07535.

[198]  Shinsuke Ideguchi,et al.  Cosmic Magnetism in Centimeter and Meter Wavelength Radio Astronomy , 2017, 1709.02072.

[199]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[200]  T. K. Sridharan,et al.  The Link Between Magnetic Fields and Cloud/Star Formation , 2014, 1404.2024.

[201]  P. Freire,et al.  Constraints on the magnetic field in the Galactic halo from globular cluster pulsars , 2020 .

[202]  C Horellou,et al.  A radio ridge connecting two galaxy clusters in a filament of the cosmic web , 2019, Science.

[203]  Pei Wang,et al.  Wide Bandwidth Observations of Pulsars C, D, and J in 47 Tucanae , 2019, The Astrophysical Journal.

[204]  Torsten Ensslin,et al.  Magnetic Field Seeding by Galactic Winds , 2006 .

[205]  C. Gheller,et al.  Simulations of extragalactic magnetic fields and of their observables , 2017, 1711.02669.

[206]  K. Bannister,et al.  The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst , 2016, Science.

[207]  R. A. Laing Kinematics and Dynamics of kiloparsec-scale Jets in Radio Galaxies with SKA , 2015 .

[208]  Theo Steininger,et al.  IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays , 2018, Journal of Cosmology and Astroparticle Physics.

[209]  J. Dowell,et al.  Modeling the Ionosphere with GPS and Rotation Measure Observations , 2017, Radio Science.

[210]  A. Melis,et al.  Sardinia Radio Telescope observations of Abell 194 , 2017, Astronomy &amp; Astrophysics.

[211]  Magnetic fields in molecular clouds , 2012 .

[212]  A. R. Taylor,et al.  Complex Faraday depth structure of active galactic nuclei as revealed by broad‐band radio polarimetry , 2012, 1201.3161.

[213]  Rachel L. Webster,et al.  The cosmic dawn and epoch of reionisation with SKA , 2015 .

[214]  T. Ensslin,et al.  Faraday synthesis - The synergy of aperture and rotation measure synthesis , 2011, 1112.4175.

[215]  Christoph Federrath,et al.  Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.

[216]  Richard M. Crutcher,et al.  Review of Zeeman Effect Observations of Regions of Star Formation , 2019, Front. Astron. Space Sci..

[217]  Romain Teyssier,et al.  A three-phase amplification of the cosmic magnetic field in galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[218]  T. Robishaw,et al.  MAGMO: polarimetry of 1720-MHz OH masers towards southern star-forming regions , 2020, 2001.06180.

[219]  Martin Reinecke,et al.  Statistical methods for the analysis of rotation measure grids in large scale structures in the SKA era , 2015 .

[220]  Federico Marinacci,et al.  Magnetizing the circumgalactic medium of disc galaxies , 2019, 1911.11163.

[221]  F. Zandanel,et al.  Diffuse Radio Emission from Galaxy Clusters , 2019, Space Science Reviews.

[222]  T. Ensslin,et al.  An improved map of the Galactic Faraday sky , 2011, 1111.6186.

[223]  R. Ekers,et al.  Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients , 2011, Nature.

[224]  L. Rudnick,et al.  COMPARISON OF ALGORITHMS FOR DETERMINATION OF ROTATION MEASURE AND FARADAY STRUCTURE. I. 1100–1400 MHZ , 2014, 1409.4151.

[225]  K. Subramanian,et al.  Astrophysical magnetic field and nonlinear dynamo theory , 2004, astro-ph/0405052.

[226]  B. W. Meyers,et al.  The Thousand-Pulsar-Array programme on MeerKAT – I. Science objectives and first results , 2020, 2002.10250.

[227]  Anvar Shukurov,et al.  New Insights on Galactic Dynamos. , 2018 .

[228]  M. Hardcastle,et al.  Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR† , 2019, Monthly Notices of the Royal Astronomical Society.

[229]  Marita Krause,et al.  CHANG-ES: XVIII—The CHANG-ES Survey and Selected Results , 2019, Galaxies.

[230]  A. W. Strong,et al.  SKA studies of in situ synchrotron radiation from molecular clouds , 2015 .

[231]  T. Ensslin,et al.  Diffuse polarized emission in the LOFAR Two-meter Sky Survey , 2019, Astronomy & Astrophysics.

[232]  O. Smirnov,et al.  The MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey , 2017, 1709.01901.

[233]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[234]  J. Prochaska,et al.  A single fast radio burst localized to a massive galaxy at cosmological distance , 2019, Science.

[235]  Canada,et al.  FAST RADIO BURSTS AS PROBES OF MAGNETIC FIELDS IN THE INTERGALACTIC MEDIUM , 2016, 1602.03235.

[236]  C. Federrath,et al.  The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function , 2019, Front. Astron. Space Sci..

[237]  A. Marcowith,et al.  The physical and chemical structure of Sagittarius B2 , 2018, Astronomy & Astrophysics.

[238]  F. Vazza,et al.  Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields , 2019, Monthly Notices of the Royal Astronomical Society.

[239]  Rene A. M. Walterbos,et al.  CHANG-ES IX: Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations , 2017, 1712.03780.

[240]  South Africa,et al.  Polarization leakage in epoch of reionization windows - III. Wide- field effects of narrow-field arrays , 2017, 1706.00875.

[241]  K. Spekkens,et al.  A DEEP SEARCH FOR EXTENDED RADIO CONTINUUM EMISSION FROM DWARF SPHEROIDAL GALAXIES: IMPLICATIONS FOR PARTICLE DARK MATTER , 2013, 1301.5306.

[242]  Peter Wilkinson The SKA and the Unknown Unknowns , 2015 .

[243]  E. Lenc,et al.  Low-frequency radio constraints on the synchrotron cosmic web , 2017, 1702.05069.

[244]  T. J. W. Lazio,et al.  Three-dimensional Tomography of the Galactic and Extragalactic Magnetoionic Medium with the SKA , 2014 .

[245]  D. Ryu,et al.  DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES , 2012, 1212.3246.

[246]  B. M. Gaensler,et al.  The origin and evolution of cosmic magnetism , 2004 .

[247]  Roland Kothes,et al.  Probing interstellar magnetic fields with Supernova remnants , 2008, Proceedings of the International Astronomical Union.

[248]  Jeff Wagg,et al.  Anticipated Performance of the Square Kilometre Array -- Phase 1 (SKA1) , 2019, 1912.12699.

[249]  Ian M. Stewart,et al.  LADUMA: Looking at the Distant Universe with the MeerKAT Array , 2018 .

[250]  John F. Hawley,et al.  A Powerful Local Shear Instability in Weakly Magnetized Disks. II. Nonlinear Evolution , 1991 .

[251]  D. V. Wiebe,et al.  The CHIME Fast Radio Burst Project: System Overview , 2018, The Astrophysical Journal.

[252]  T. Ensslin,et al.  The Galactic Faraday depth sky revisited , 2019, Astronomy & Astrophysics.

[253]  Klaus Dolag,et al.  Origin of strong magnetic fields in Milky Way-like galactic haloes , 2012, 1202.3349.

[254]  N. Hurley-Walker,et al.  The POlarised GLEAM Survey (POGS) I: First results from a low-frequency radio linear polarisation survey of the southern sky , 2018, Publications of the Astronomical Society of Australia.

[255]  Kevin Stovall,et al.  MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS , 2016 .

[256]  Manoj Joshi,et al.  Ultra wide bandwidth , 2010, 2010 2nd International Conference on Education Technology and Computer.

[257]  L. Harvey-Smith,et al.  MAGMO: coherent magnetic fields in the star‐forming regions of the Carina‐Sagittarius spiral arm tangent , 2012, 1207.3550.

[258]  Lawrence Rudnick Optimizing Faraday Background Grids , 2019 .

[259]  Bo Peng,et al.  Giant radio galaxies as probes of the ambient WHIM in the era of the SKA , 2015 .

[260]  Christopher L. Williams,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.

[261]  T. J. Galvin,et al.  The POlarised GLEAM Survey (POGS) II: Results from an all-sky rotation measure synthesis survey at long wavelengths , 2020, Publications of the Astronomical Society of Australia.

[262]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[263]  S. Kazemi,et al.  Probing ionospheric structures using the LOFAR radio telescope , 2016, 1606.04683.

[264]  F. Vazza,et al.  The Challenge of Detecting Intracluster Filaments with Faraday Rotation , 2018, Galaxies.

[265]  J. Anderson,et al.  The intergalactic magnetic field probed by a giant radio galaxy , 2018, Astronomy & Astrophysics.