Chiral Phases of a Confined Cholesteric Liquid Crystal: Anchoring-Dependent Helical and Smectic Self-Assembly in Nanochannels

Chiral liquid crystals (ChLCs) allow a fundamental insight into the interplay of molecular chirality and the formation of macroscopic, self-assembled helices. They also exhibit unique optical properties, in particular huge polarization rotation, which is employed in a wide range of photonic technologies. Here, we present a study of linear and circular optical birefringence in combination with X-ray diffraction experiments on an archetypical ChLC, i.e., the cholesteric ester CE6, confined in cylinders of mesoporous alumina and silica with distinct polymer surface graftings resulting in normal or tangential wall anchoring. The unconfined ChLC exhibits a discontinuous, first-order isotropic-to-chiral nematic (cholesteric) phase transition with the formation of double-twist helices and a discontinuous cholesteric-to-smectic A transition. The thermotropic behavior of the confined ChLC, explored in a channel radii range of 7–21 nm, deviates substantially from bulk behavior. There is no isotropic state. In contr...

[1]  C. Glorieux,et al.  Blue phase III widening in CE6-dispersed surface-functionalised CdSe nanoparticles , 2010 .

[2]  C. Rosenblatt Optical imaging of liquid crystals at the nanoscale. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  M. Schoen,et al.  Defect topologies in chiral liquid crystals confined to mesoscopic channels. , 2015, The Journal of chemical physics.

[4]  F. Lequeux,et al.  Helicoidal instability in cholesteric capillary tubes , 1988 .

[5]  G. Feller,et al.  Experimental evidence of a conic helical liquid crystalline structure in cylindrical microcavities , 1994 .

[6]  N. Clark,et al.  Universality and Scaling in the Disordering of a Smectic Liquid Crystal , 2001, Science.

[7]  D. Morineau,et al.  Structure and Phase Behavior of a Discotic Columnar Liquid Crystal Confined in Nanochannels , 2012 .

[8]  C. Hall,et al.  Disclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal. , 2014, Soft matter.

[9]  Slobodan Žumer,et al.  Cholesteric blue phases: effect of strong confinement , 2010 .

[10]  K. Gubbins,et al.  Effects of confinement on freezing and melting , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Jun-ichi Fukuda,et al.  Ring defects in a strongly confined chiral liquid crystal. , 2011, Physical review letters.

[12]  C. Tschierske,et al.  Chiral self-sorting and amplification in isotropic liquids of achiral molecules. , 2014, Nature chemistry.

[13]  M. Steinhart,et al.  Honeycombs in honeycombs: complex liquid crystal alumina composite mesostructures. , 2014, ACS nano.

[14]  V. Kopp,et al.  Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. , 1998, Optics letters.

[15]  H. Christenson Confinement effects on freezing and melting , 2001 .

[16]  Jun-ichi Fukuda,et al.  Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. , 2011, Nature communications.

[17]  Hl. de Vries Rotatory power and other optical properties of certain liquid crystals , 1951 .

[18]  Stretchable liquid-crystal blue-phase gels. , 2012, Nature materials.

[19]  J. Goodby,et al.  Rotational damping and the spontaneous polarization in ferroelectric liquid crystals , 1987 .

[20]  M. Schoen,et al.  Microscopic structure of molecularly thin confined liquid-crystal films , 1997 .

[21]  P S Clegg,et al.  First-order isotropic-smectic-A transition in liquid-crystal-aerosil gels. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  N. Stefanou,et al.  Giant Optical Activity of Helical Architectures of Plasmonic Nanorods , 2012 .

[23]  G. W. Gray,et al.  Some Cholesteric Derivatives of S-(+)-4-(2′-Methylbutyl) Phenol , 1978 .

[24]  R. Repnik,et al.  Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  P. Sheng Phase Transition in Surface-Aligned Nematic Films , 1976 .

[26]  Tanimoto,et al.  Chiral-racemic phase diagram of a blue-phase liquid crystal. , 1985, Physical review. A, General physics.

[27]  C. Zannoni,et al.  Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[28]  A. Kityk,et al.  Thermotropic nematic and smectic order in silica glass nanochannels , 2010, 1010.4856.

[29]  V. Percec,et al.  Columnar liquid crystals in cylindrical nanoconfinement. , 2015, ACS nano.

[30]  J. Lintuvuori,et al.  Constant-pressure simulations of Gay-Berne liquid-crystalline phases in cylindrical nanocavities. , 2013, Physical chemistry chemical physics : PCCP.

[31]  M. Kim,et al.  Observation of liquid crystals confined in an elliptic cylinder , 2012 .

[32]  V. Barna,et al.  Optical nanotomography of anisotropic|[nbsp]|fluids , 2008 .

[33]  Y. Gogotsi,et al.  Imaging of liquid crystals confined in carbon nanopipes , 2006 .

[34]  D. Morineau,et al.  Molecular dynamics of pyrene based discotic liquid crystals confined in nanopores probed by incoherent quasielastic neutron scattering , 2014 .

[35]  K. Knorr,et al.  Preferred orientations and stability of medium length n-alkanes solidified in mesoporous silicon. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  M. Eich,et al.  Inhomogeneous relaxation dynamics and phase behaviour of a liquid crystal confined in a nanoporous solid. , 2015, Soft matter.

[37]  Soon Moon Jeong,et al.  Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. , 2008, Nature materials.

[38]  K. Knorr,et al.  Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. , 2008, Physical review letters.

[39]  R. Hornreich,et al.  A body-centered cubic structure for the cholesteric blue phase , 1980 .

[40]  K. Knorr,et al.  Thermodynamic and Structural Investigations of Condensates of Small Molecules in Mesopores , 2008 .

[41]  C. Zannoni,et al.  Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon , 2012 .

[42]  Nanoscale alignment and optical nanoimaging of a birefringent liquid. , 2008, Nanotechnology.

[43]  A. Kityk,et al.  Paranematic-to-nematic ordering of a binary mixture of rodlike liquid crystals confined in cylindrical nanochannels. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Ozaki,et al.  Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy , 2015, Scientific Reports.

[45]  B. Zappone,et al.  Direct nanomechanical measurement of an anchoring transition in a nematic liquid crystal subject to hybrid anchoring conditions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[46]  J. Thoen,et al.  High-resolution birefringence investigation of octylcyanobiphenyl (8CB): an upper bound on the discontinuity at the smectic-A to nematic phase transition. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Y. Martínez-Ratón,et al.  Capillary and winding transitions in a confined cholesteric liquid crystal. , 2015, Soft matter.

[48]  A. Schönhals,et al.  Phase Transitions and Molecular Mobility of a Discotic Liquid Crystal under Nanoscale Confinement , 2013 .

[49]  A. Kityk,et al.  Influence of nanoconfinement on the nematic behavior of liquid crystals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  H. Amenitsch,et al.  Dimensional crossover and scaling behavior of a smectic liquid crystal confined to controlled-pore glass matrices , 2012 .

[51]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[52]  S. S. Choi,et al.  Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. , 2012, Nature materials.

[53]  A. Gellman Chiral surfaces: accomplishments and challenges. , 2010, ACS nano.

[54]  H. Butt,et al.  Suppression of phase transitions in a confined rodlike liquid crystal. , 2011, ACS nano.

[55]  D. Morineau,et al.  Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis. , 2014, Soft matter.

[56]  Daniel A. Beller,et al.  Focal Conic Flower Textures at Curved Interfaces , 2013, 1310.6797.

[57]  Tom C. Lubensky,et al.  Chiral structures from achiral liquid crystals in cylindrical capillaries , 2015, Proceedings of the National Academy of Sciences.

[58]  D. Morineau,et al.  Smectic C chevrons in nanocylinders , 2014 .

[59]  Ocko Smectic-layer growth at solid interfaces. , 1990, Physical review letters.

[60]  S. Žumer,et al.  Calorimetric study of octylcyanobiphenyl liquid crystal confined to a controlled-pore glass. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Kurt Binder,et al.  Confinement effects on phase behavior of soft matter systems. , 2008, Soft matter.

[62]  K. Ishikawa,et al.  Observation of two isotropic-nematic phase transitions near a surface. , 2011, Physical review letters.

[63]  H. Yokoyama Nematic–isotropic transition in bounded thin films , 1988 .

[64]  Christopher M. Care,et al.  Computer simulation of liquid crystals , 2005 .

[65]  R. Blinc,et al.  Birefringence and tilt angle in the antiferroelectric, ferroelectric, and intermediate phases of chiral smectic liquid crystals , 1998 .

[66]  V. S. R. Jampani,et al.  Different modulated structures of topological defects stabilized by adaptive targeting nanoparticles , 2013 .

[67]  Marco Buscaglia,et al.  Memory and topological frustration in nematic liquid crystals confined in porous materials. , 2011, Nature materials.

[68]  M. Fukuto,et al.  Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: an x-ray reflectivity study. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  R. Wehrspohn,et al.  Liquid crystal director fields in micropores of photonic crystals , 2007 .

[70]  M. Ozaki,et al.  Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded with a Liquid Crystal Nanopore Network , 2011, Advanced materials.

[71]  J. Toner,et al.  Nematic–to–Smectic- A Transition in Aerogel , 1997, cond-mat/9702011.

[72]  D. Morineau,et al.  Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores. , 2009, The Journal of chemical physics.

[73]  S. Žumer,et al.  Influence of finite size and wetting on nematic and smectic phase behavior of liquid crystal confined to controlled-pore matrices. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  P. Huber Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  The effect of electric fields on light scattering in the isotropic phase of CE6/CE6R mixtures , 2006 .

[76]  Daniel A. Beller,et al.  Elasticity-dependent self-assembly of micro-templated chromonic liquid crystal films. , 2014, Soft matter.