Unbounded Program Memory Adds to the Expressive Power of First-Order Programming Logic

It is proved that no logic of programs with unbounded memory is reducible to a bounded memory programming logic. This is achieved by carefully analyzing firstorder definability in the algebra of finite binary trees.

[1]  Pawel Urzyczyn,et al.  The Unwind Property in Certain Algebras , 1981, Inf. Control..

[2]  Denis J. Kfoury Comparing Algebraic Structures up to Algorithmic Equivalence , 1972, ICALP.

[3]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[4]  J. C. Shepherdson,et al.  Computation Over Abstract Structures: Serial and Parallel Procedures and Friedman's Effective Definitional Schemes , 1975 .

[5]  Jerzy Tiuryn Implicit definability of finite binary trees by sets of equations , 1983, Logic and Machines.

[6]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[7]  Carl Hewitt,et al.  Comparative Schematology , 1970 .

[8]  Albert R. Meyer,et al.  Definability in Dynamic Logic , 1981, J. Comput. Syst. Sci..

[9]  Karl Winklmann,et al.  Expressing Program Looping in Regular Dynamic Logic , 1982, Theor. Comput. Sci..

[10]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.

[11]  Jerzy Tiuryn,et al.  A Note On Equivalences Among Logics of Programs , 1981, Logic of Programs.

[12]  R. Milner Mathematical Centre Tracts , 1976 .

[13]  Jerzy Tiuryn A Survey of the Logic of Effective Definitions , 1979, Logic of Programs.

[14]  J. D. Monk,et al.  Mathematical Logic , 1976 .

[15]  Sheila A. Greibach,et al.  Theory of Program Structures: Schemes, Semantics, Verification , 1976, Lecture Notes in Computer Science.

[16]  J. Moldestad,et al.  Finite alogorithmic procedures and computation theories. , 1980 .