Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A Comparative Study

Abstract : We present a comprehensive performance analysis of multiple appearance-based face recognition methodologies, on visible and thermal infrared imagery. We compare algorithms within and between modalities in terms of recognition performance, false alarm rates and requirements to achieve specified performance levels. The effect of illumination conditions on recognition performance is emphasized, as it underlines the relative advantage of radiometrically calibrated thermal imagery for face recognition.

[1]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[2]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[3]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[4]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[5]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[6]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[7]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[8]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[9]  David J. Kriegman,et al.  What is the set of images of an object under all possible lighting conditions? , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Joseph Wilder,et al.  Comparison of visible and infra-red imagery for face recognition , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[11]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[14]  H. Wechsler,et al.  Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition , 1999 .

[15]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[16]  F. Prokoski History, current status, and future of infrared identification , 2000, Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640).

[17]  Lawrence B. Wolff,et al.  Illumination invariant face recognition using thermal infrared imagery , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  J. Beveridge,et al.  Parametric and Nonparametric Methods for the Statistical Evaluation of Human ID Algorithms , 2001 .

[19]  Marian Stewart Bartlett,et al.  Face image analysis by unsupervised learning , 2001 .

[20]  Lawrence B. Wolff,et al.  Quantitative measurement of illumination invariance for face recognition using thermal infrared imagery , 2003, SPIE Optics + Photonics.