Two-Dimensional Minimax Latin Hypercube Designs
暂无分享,去创建一个
[1] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[2] Thomas W. Lucas,et al. Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes , 2007, Technometrics.
[3] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[4] Edwin R. van Dam,et al. Bounds for Maximin Latin Hypercube Designs , 2007, Oper. Res..
[5] K. Nurmela,et al. COVERING A SQUARE WITH UP TO 30 EQUAL CIRCLES , 2000 .
[6] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[7] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[8] Dick den Hertog,et al. Maximin Latin Hypercube Designs in Two Dimensions , 2007, Oper. Res..
[9] Donald Ylvisaker,et al. Minimax distance designs in two-level factorial experiments , 1995 .
[10] Franco P. Preparata,et al. Computational Geometry , 1985, Texts and Monographs in Computer Science.
[11] Dick den Hertog,et al. Space-filling Latin hypercube designs for computer experiments , 2008 .
[12] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[13] V. R. Joseph,et al. ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS , 2008 .