Automated netlist generation for 3D electrothermal and electromagnetic field problems

We present a method for the automatic generation of netlists describing general three-dimensional electrothermal and electromagnetic field problems. Using a pair of structured orthogonal grids as spatial discretisation, a one-to-one correspondence between grid objects and circuit elements is obtained by employing the finite integration technique. The resulting circuit can then be solved with any standard available circuit simulator, alleviating the need for the implementation of a custom time integrator. Additionally, the approach straightforwardly allows for field-circuit coupling simulations by appropriately stamping the circuit description of lumped devices. As the computational domain in wave propagation problems must be finite, stamps representing absorbing boundary conditions are developed as well. Representative numerical examples are used to validate the approach. The results obtained by circuit simulation on the generated netlists are compared with appropriate reference solutions.

[1]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems] , 1996 .

[2]  R. F. Milsom,et al.  Efficient SPICE-compatible electromagnetic model of arbitrarily shaped integrated passive structure , 1999 .

[3]  Lauri Kettunen,et al.  Fields and circuits in computational electromagnetism , 2001 .

[4]  Rolf Schuhmann,et al.  Model order reduction and equivalent circuit extraction for fit discretized electromagnetic systems , 2002 .

[5]  Andreas C. Cangellaris,et al.  SPICE-compatible stamps for semi-discrete approximations of Maxwell's equations , 2008 .

[6]  Myoung Joon Choi,et al.  Direct generation of Spice compatible passive reduced order models of ground/power planes , 2000, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070).

[7]  Gabriel Kron,et al.  Numerical Solution of Ordinary and Partial Differential Equations by Means of Equivalent Circuits , 1945 .

[8]  G. Wachutka,et al.  Combination of thermal subsystems modeled by rapid circuit transformation , 2007, 2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC).

[9]  周天舒 Simulation program with integrated circuit emphasis (SPICE) model building method for size reduced process , 2010 .

[10]  C. Durney,et al.  Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements , 1992 .

[11]  Jacques Citerne,et al.  A new global time domain electromagnetic simulator of microwave circuits including lumped elements based on finite element method , 1997, IMS 1997.

[12]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[13]  R. Jacob Baker,et al.  Concise thermal to electrical parameters extraction of thermoelectric generator for spice modeling , 2015, 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).

[14]  M. Bikdash,et al.  Generation of Equivalent-Circuit Models From Simulation Data of a Thermal System , 2010, IEEE Transactions on Power Electronics.

[15]  Roland W. Freund,et al.  Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm , 1995, 32nd Design Automation Conference.

[16]  A. Taflove,et al.  The use of SPICE lumped circuits as sub-grid models for FDTD analysis , 1994, IEEE Microwave and Guided Wave Letters.

[17]  Jacques Citerne,et al.  A new global finite element analysis of microwave circuits including lumped elements , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[18]  R. S. Vogelsong,et al.  Extending SPICE for electro-thermal simulation , 1989, 1989 Proceedings of the IEEE Custom Integrated Circuits Conference.

[19]  Thomas Weiland,et al.  Winding functions in transient magnetoquasistatic field-circuit coupled simulations , 2013 .

[20]  T. Weiland A discretization model for the solution of Maxwell's equations for six-component fields , 1977 .

[21]  Myoung Joon Choi,et al.  A quasi three-dimensional distributed electromagnetic model for complex power distribution networks , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[22]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[23]  Juraj Marek,et al.  Fast 3-D Electrothermal Device/Circuit Simulation of Power Superjunction MOSFET Based on SDevice and HSPICE Interaction , 2014, IEEE Transactions on Electron Devices.

[24]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[25]  Herbert De Gersem,et al.  Transient field‐circuit coupled formulation based on the finite integration technique and a mixed circuit formulation , 2003 .

[26]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[27]  Giulio Antonini,et al.  Electrothermal formulation of the partial element equivalent circuit method , 2018 .

[28]  Andreas C. Cangellaris,et al.  Rigorous electromagnetic modeling of chip-to-package (first-level) interconnections , 1993 .

[29]  Giulio Antonini,et al.  SPICE equivalent circuits of frequency-domain responses , 2003 .

[30]  Thomas Weiland,et al.  Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities , 1985 .

[31]  C. M. Johnson,et al.  Automated Fast Extraction of Compact Thermal Models for Power Electronic Modules , 2013, IEEE Transactions on Power Electronics.

[32]  M. Clemens,et al.  Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .

[33]  Peter Schwarz,et al.  Electro-thermal circuit simulation using simulator coupling , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[34]  D. Griffiths Introduction to Electrodynamics , 2017 .

[35]  Ankur Omer,et al.  Erratum to “Next Generation Sequencing: Potential and Application in Drug Discovery” , 2014, The Scientific World Journal.

[36]  Sebastian Schöps,et al.  Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems , 2018 .

[37]  M. Turowski,et al.  Fast, automated thermal simulation of three-dimensional integrated circuits , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[38]  G. Benderskaya,et al.  Transient electro-quasistatic adaptive simulation schemes , 2004, IEEE transactions on magnetics.

[39]  Michael Günther,et al.  Modelling and discretization of circuit problems , 2005 .

[40]  Allen Taflove,et al.  FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads , 1994 .

[41]  J. R. Wait Letter to the editor: the 'magnetic conductivity' and wave propagation , 1992 .

[42]  Sebastian Schöps,et al.  Automatic generation of equivalent electrothermal SPICE netlists from 3D electrothermal field models , 2016, 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE).

[43]  Jan G. Korvink,et al.  Fast Simulation of Electro-Thermal MEMS: Efficient Dynamic Compact Models , 2006 .

[44]  Michael Hinze,et al.  POD Model Order Reduction of Electrical Networks with Semiconductors Modeled by the Transient Drift–Diffusion Equations , 2012 .

[45]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[46]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[47]  D. Kharzeev,et al.  Chiral Magnetic conductivity , 2009, 0907.5007.

[48]  Peter Russer,et al.  Lumped element equivalent circuit parameter extraction of distributed microwave circuits via TLM simulation , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[49]  D. L. Blackburn,et al.  Simulating the dynamic electrothermal behavior of power electronic circuits and systems , 1993 .

[50]  Carlo de Falco,et al.  Automatic Thermal Network Extraction and Multiscale Electro-Thermal Simulation , 2010 .

[51]  Eric R. Keiter,et al.  Xyce Parallel Electronic Simulator Users' Guide Version 6.10 , 2018 .

[52]  Martin Witting Simulation elektrischer Netzwerke unter Berücksichtigung ihrer elektromagnetischen Umgebung , 1997 .

[53]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[54]  Thomas Weiland,et al.  Time domain modeling of gyromagnetic materials using the finite integration technique , 2001 .

[55]  A. Ruehli Equivalent Circuit Models for Three-Dimensional Multiconductor Systems , 1974 .

[56]  Sebastian Schöps,et al.  Electrothermal simulation of bonding wire degradation under uncertain geometries , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[57]  K. Zhukovsky Solution of Some Types of Differential Equations: Operational Calculus and Inverse Differential Operators , 2014, TheScientificWorldJournal.

[58]  B. Geeraerts,et al.  Electrothermal simulation and design of integrated circuits , 1994, IEEE J. Solid State Circuits.

[59]  G. Molinari,et al.  A time-domain 3-D full-Maxwell solver based on the cell method , 2006, IEEE Transactions on Magnetics.

[60]  Martin Eller A low-frequency stabble maxwell formulation in frequency domain and industrial applications , 2017 .

[61]  Rafal Wrobel,et al.  An Accurate Mesh-Based Equivalent Circuit Approach to Thermal Modeling , 2014, IEEE Transactions on Magnetics.

[62]  Andrea Irace,et al.  Circuit-Based Electrothermal Simulation of Power Devices by an Ultrafast Nonlinear MOR Approach , 2016, IEEE Transactions on Power Electronics.

[63]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[64]  Nicola Delmonte,et al.  Non-linear thermal simulation at system level: Compact modelling and experimental validation , 2018, Microelectron. Reliab..

[65]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[66]  Pulgarín Rivera,et al.  Propagation of LF AND VLF lightning electromagnetic waves: the ground effects. Applications to Lightning Locating Systems in Mountainous Regions. , 2020 .

[67]  Irina Munteanu Tree-Cotree Condensation Properties , 2002 .

[68]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..