Active MEMS metamaterials for THz bandwidth control

We experimentally demonstrate a microelectromechanical system (MEMS) based metamaterial with actively tunable resonance bandwidth characteristics, operating in the terahertz (THz) spectral region. The broadband resonance characteristic feature of the MEMS metamaterial is achieved by integrating sixteen microcantilever resonators of identical lengths but with continuously varying release lengths, to form a supercell. The MEMS metamaterial showed broadband resonance characteristics with a full width half maximum (FWHM) value of 175 GHz for resonators with a metal thickness of 900 nm and was further improved to 225 GHz by reducing the metal thickness to 500 nm. The FWHM resonance bandwidth of the MEMS metamaterial was actively switched to 90 GHz by electrostatically controlling the out-of-plane release height of the constituent microcantilever resonators. Furthermore, the electrically controlled resonance bandwidth allows for the active phase engineering with relatively constant intensity at a given frequenc...

[1]  Chengkuo Lee,et al.  Micro-electro-mechanically switchable near infrared complementary metamaterial absorber , 2014 .

[2]  Q. Xing,et al.  Broadband resonant terahertz transmission in a composite metal-dielectric structure. , 2009, Optics express.

[3]  C. Ho,et al.  Microelectromechanically tunable multiband metamaterial with preserved isotropy , 2015, Scientific Reports.

[4]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[5]  Chengkuo Lee,et al.  Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices , 2016 .

[6]  C. Soci,et al.  Independent Tailoring of Super‐Radiant and Sub‐Radiant Modes in High‐Q Plasmonic Fano Resonant Metasurfaces , 2016 .

[7]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[8]  Yingli Liu,et al.  Terahertz metamaterials with VO2 cut-wires for thermal tunability , 2010 .

[9]  Chengkuo Lee,et al.  Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics , 2014 .

[10]  M. Fujiki Helix Magic. Thermo-Driven Chiroptical Switching and Screw-Sense Inversion of Flexible Rod Helical Polysilylenes , 2000 .

[11]  Chengkuo Lee,et al.  Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial , 2016 .

[13]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[14]  Hiroyuki Fujita,et al.  MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. , 2014, Optics express.

[15]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[16]  H. Fujita,et al.  Tunable Terahertz Filter and Modulator Based on Electrostatic MEMS Reconfigurable SRR Array , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Ranjan Singh,et al.  Lattice-induced transparency in planar metamaterials , 2016, 1605.03277.

[18]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[19]  C. Ho,et al.  Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region , 2015 .

[20]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[21]  Sailing He,et al.  Ultrabroadband strong light absorption based on thin multilayered metamaterials , 2013, 1306.3289.

[22]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[23]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[24]  C. Ho,et al.  Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules , 2016 .

[25]  C. Ho,et al.  Periodic Array of Subwavelength MEMS Cantilevers for Dynamic Manipulation of Terahertz Waves , 2015, Journal of Microelectromechanical Systems.

[26]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[27]  John P. Barrett,et al.  A broadband low-reflection metamaterial absorber , 2010 .

[28]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[29]  A. Bettiol,et al.  Tailoring the slow light behavior in terahertz metasurfaces , 2015, 1502.06684.

[30]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[31]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[32]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[33]  Chengkuo Lee,et al.  Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms , 2017 .

[34]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[35]  Chengkuo Lee,et al.  A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage , 2012 .

[36]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[37]  D. R. Chowdhury,et al.  A broadband planar terahertz metamaterial with nested structure. , 2011, Optics express.

[38]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[39]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[40]  Guo-Qiang Lo,et al.  Polarization dependent state to polarization independent state change in THz metamaterials , 2011 .

[41]  Xiaopeng Zhao,et al.  Planar isotropic broadband metamaterial absorber , 2013 .

[42]  Ji Zhou,et al.  Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods. , 2008, Optics express.

[43]  Mehmet Unlu,et al.  Miniature multi-contact MEMS switch for broadband terahertz modulation. , 2014, Optics express.

[44]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[45]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[46]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[47]  Chengkuo Lee,et al.  Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators , 2013 .