The optical design of the Litebird middle and high frequency telescope

LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation.

[1]  Luca Lamagna,et al.  A polarization modulator unit for the mid- and high-frequency telescopes of the LiteBIRD mission , 2020, Astronomical Telescopes + Instrumentation.

[2]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[3]  G. Pisano,et al.  Polarimetry at millimeter wavelengths with the NIKA camera: Calibration and performance , 2016, 1609.02042.

[4]  P. A. R. Ade,et al.  Pre-flight integration and characterization of the SPIDER balloon-borne telescope , 2014, Astronomical Telescopes and Instrumentation.

[5]  P. A. R. Ade,et al.  The LiteBIRD Satellite Mission: Sub-Kelvin Instrument , 2018, Journal of Low Temperature Physics.

[6]  Edward J. Wollack,et al.  Electromagnetic and Thermal Properties of a Conductively Loaded Epoxy , 2008 .

[7]  Adrian T. Lee,et al.  Development of Space-Optimized TES Bolometer Arrays for LiteBIRD , 2020 .

[8]  G. Pisano,et al.  Development and application of metamaterial-based half-wave plates for the NIKA and NIKA2 polarimeters , 2020, Astronomy & Astrophysics.

[9]  Jon E. Gudmundsson Geometrical and physical optics analysis for mm-wavelength refractor telescopes designed to map the cosmic microwave background. , 2020, Applied optics.

[10]  M. J. Persky Review of black surfaces for space-borne infrared systems , 1999 .

[11]  Bruno Maffei,et al.  A BROADBAND METAL-MESH HALF-WAVE PLATE FOR MILLIMETRE WAVE LINEAR POLARISATION ROTATION , 2012 .

[12]  Adrian T. Lee,et al.  EBEX: a balloon-borne CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[13]  A. G. Vieregg,et al.  BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.

[14]  M. E. Jones,et al.  Permittivity and permeability of epoxy–magnetite powder composites at microwave frequencies , 2020, 2001.02336.

[15]  Bruno Maffei,et al.  Multi-octave metamaterial reflective half-wave plate for millimeter and sub-millimeter wave applications. , 2016, Applied optics.

[16]  Nicolas Ponthieu,et al.  Preliminary results on the instrumental polarization of NIKA2-Pol at the IRAM 30m telescope , 2020, EPJ Web of Conferences.

[17]  Brian Keating,et al.  The Simons Observatory: instrument overview , 2018, Astronomical Telescopes + Instrumentation.

[18]  Axel Murk,et al.  Characterization of Magnetically Loaded Microwave Absorbers , 2011 .

[19]  W. Fan,et al.  Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber. , 2015, Applied optics.

[20]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[21]  P. A. R. Ade,et al.  Progress Report on the Large-Scale Polarization Explorer , 2020, Journal of Low Temperature Physics.

[22]  Peter Ade,et al.  Multi-octave anti-reflection coating for polypropylene-based quasi-optical devices , 2018, Astronomical Telescopes + Instrumentation.

[23]  Edward J. Wollack,et al.  A 3D-printed broadband millimeter wave absorber. , 2018, The Review of scientific instruments.

[24]  Ki Won Yoon,et al.  An 84 Pixel All-Silicon Corrugated Feedhorn for CMB Measurements , 2011, Journal of Low Temperature Physics.

[25]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[26]  M. Halpern,et al.  Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast, and various plastics. , 1986, Applied optics.

[27]  Edward J. Wollack,et al.  Updated Design of the CMB Polarization Experiment Satellite LiteBIRD , 2020, 2001.01724.