A review on recent advances in hybrid supercapacitors: Design, fabrication and applications

Abstract Hybrid supercapacitors with their improved performance in energy density without altering their power density have been in trend since recent years. The hybrid supercapacitor delivers higher specific capacitance in comparison to the existing electric double layer capacitor (EDLC) and pseudocapacitors. Generally, the asymmetric behavior of hybrid supercapacitors which is the combination of EDLC and pseudocapacitor acts as an enhancer in its respective capacitance values. This asymmetric approach marks a new beginning towards the much-needed pollution free, long lasting and proficient energy-storing performance. Corresponding to their utilization in hybrid electric vehicles and similar sort of power necessity based devices; the research in developing new advanced storage devices finds an enormous and vast future ahead. The most significant factor for the energy efficient applications demands a considerably higher ratio of surface to the volume by incorporation of new materials. This review article gives an overview of recent advances in the development of hybrid supercapacitors, storage mechanism, criteria of formation, components, different electrode and electrolyte materials, electrochemical profile assessment, design fabrication and their applications.

[1]  A. Vlad,et al.  Hybrid supercapacitor-battery materials for fast electrochemical charge storage , 2014, Scientific Reports.

[2]  M. Shahabuddin,et al.  CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. , 2016, Chemical communications.

[3]  Jie Tao,et al.  Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors , 2008 .

[4]  R. Menéndez,et al.  Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte , 2011 .

[5]  TiOx/Ny nanowire arrays: NH3-assisted controllable vertical oriented growth and the electrophotochemical properties , 2010 .

[6]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[7]  Chuan Wu,et al.  Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 , 2008 .

[8]  M. Ulaganathan,et al.  Research progress in Na-ion capacitors , 2016 .

[9]  Q. Wang,et al.  Controllable synthesis of 2D amorphous carbon and partially graphitic carbon materials: Large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte , 2016 .

[10]  François Béguin,et al.  Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons , 2006 .

[11]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[12]  O. Park,et al.  An Electrochemical Capacitor Based on a Ni ( OH ) 2/Activated Carbon Composite Electrode , 2002 .

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  Recep Yuksel,et al.  Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes , 2016 .

[15]  Nae-Lih Wu,et al.  Nanocrystalline oxide supercapacitors , 2002 .

[16]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[17]  P. Ajayan,et al.  Electromechanical Properties of Polymer Electrolyte‐Based Stretchable Supercapacitors , 2014 .

[18]  Y. Tsukada,et al.  Supercapacitor Using an Electrolyte Charge Storage System , 2011 .

[19]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[20]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[21]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[22]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[23]  Feiyu Kang,et al.  Renewing Functionalized Graphene as Electrodes for High‐Performance Supercapacitors , 2012, Advanced materials.

[24]  Xianfeng Fan,et al.  Handbook of Clean Energy Systems , 2015 .

[25]  Y. Shao-horn,et al.  Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. , 2010, ACS nano.

[26]  Chi-Chang Hu,et al.  Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems , 2011 .

[27]  H. Boehm.,et al.  Surface oxides on carbon and their analysis: a critical assessment , 2002 .

[28]  R. Chahine,et al.  The Influence of the Range of Electroactivity and Capacitance of Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor , 2003 .

[29]  Q. Wang,et al.  Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors , 2013 .

[30]  François Béguin,et al.  Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors , 2005 .

[31]  X. Lou,et al.  Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co3O4 Hollow Nanoparticles as Self‐Supported Electrodes for Electrochemical Capacitors , 2013 .

[32]  Jinhwan Yoon,et al.  Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity , 2015 .

[33]  J. Tu,et al.  Spinel manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications. , 2014, ACS applied materials & interfaces.

[34]  F. Béguin,et al.  High-energy density graphite/AC capacitor in organic electrolyte , 2008 .

[35]  H. Alshareef,et al.  Enhanced rate performance of mesoporous Co(3)O(4) nanosheet supercapacitor electrodes by hydrous RuO(2) nanoparticle decoration. , 2014, ACS applied materials & interfaces.

[36]  Petr Novák,et al.  Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of , 2011 .

[37]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[38]  Vinay Gupta,et al.  Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors , 2008 .

[39]  Teng Zhai,et al.  Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. , 2014, Nano letters.

[40]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[41]  C. Das,et al.  α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material. , 2014, Dalton transactions.

[42]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[43]  Y. E. Kalay,et al.  Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors , 2016 .

[44]  Yafei Zhang,et al.  Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors , 2017 .

[45]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[46]  Marina Mastragostino,et al.  Conducting polymers as electrode materials in supercapacitors , 2002 .

[47]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[48]  E. Morallón,et al.  Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials , 2008 .

[49]  M. Yoshio,et al.  A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode , 2009 .

[50]  Feng Wu,et al.  A measurement method for determination of dc internal resistance of batteries and supercapacitors , 2010 .

[51]  Jim P. Zheng,et al.  The Optimal Energy Density of Electrochemical Capacitors Using Two Different Electrodes , 2004 .

[52]  Sunghun Cho,et al.  Ex Situ Fabrication of Polypyrrole-Coated Core-Shell Nanoparticles for High-Performance Coin Cell Supercapacitor , 2018, Nanomaterials.

[53]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[54]  Andrew J. Gmitter,et al.  The design of alternative nonaqueous high power chemistries , 2006 .

[55]  Y. Sharma,et al.  Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon , 2013 .

[56]  A. Heeger,et al.  The electronic and electrochemical properties of poly(isothianaphthene) , 1985 .

[57]  Abdullah M. Asiri,et al.  Interfacially synthesized PAni-PMo12 hybrid material for supercapacitor applications , 2014, Bulletin of Materials Science.

[58]  Xiaobo Ji,et al.  Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors , 2014 .

[59]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[60]  V. Suryanarayanan,et al.  Ethyl viologen dibromide as a novel dual redox shuttle for supercapacitors , 2016 .

[61]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[62]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[63]  Debra R. Rolison,et al.  Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage , 1999 .

[64]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[65]  T. Brousse,et al.  Electrolytes for hybrid carbon–MnO2 electrochemical capacitors , 2010 .

[66]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[67]  Shan Zhu,et al.  Electrostatic-driven solid phase microextraction coupled with surface enhanced Raman spectroscopy for rapid analysis of pentachlorophenol. , 2017 .

[68]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[69]  B. Conway,et al.  Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs , 2006 .

[70]  Yihe Zhang,et al.  Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors , 2014, Nanoscale Research Letters.

[71]  X. Lou,et al.  Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties , 2016 .

[72]  E. Frąckowiak,et al.  Carbon nanotubes and their composites in electrochemical applications , 2011 .

[73]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[74]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[75]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[76]  Pengyi Tang,et al.  Enhanced energy density of asymmetric supercapacitors via optimizing negative electrode material and mass ratio of negative/positive electrodes , 2013, Journal of Solid State Electrochemistry.

[77]  F. Béguin,et al.  Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors , 2009 .

[78]  Hu-lin Li,et al.  Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors , 2008 .

[79]  Shuren Zhang,et al.  Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors , 2006 .

[80]  Yongsheng Chen,et al.  An overview of the applications of graphene-based materials in supercapacitors. , 2012, Small.

[81]  Nobuhiro Ogihara,et al.  Encapsulation of Nanodot Ruthenium Oxide into KB for Electrochemical Capacitors , 2009 .

[82]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[83]  Mao-wen Xu,et al.  Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor , 2006 .

[84]  Minshen Zhu,et al.  An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement , 2015 .

[85]  H. Chu,et al.  Study of electrochemical properties and the charge/discharge mechanism for Li4Mn5O12/MnO2-AC hybrid supercapacitor , 2009 .

[86]  G. Yin,et al.  Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors , 2011 .

[87]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[88]  Ugo Bardi,et al.  Ionic liquids for hybrid supercapacitors , 2004 .

[89]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[90]  Thierry Aubert,et al.  Activated carbon–carbon nanotube composite porous film for supercapacitor applications , 2006 .

[91]  T. A. Hatton,et al.  Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. , 2015, Journal of colloid and interface science.

[92]  D. Qu Mechanism for electrochemical hydrogen insertion in carbonaceous materials , 2008 .

[93]  M. Kotal,et al.  Polyaniline-carbon nanofiber composite by a chemical grafting approach and its supercapacitor application. , 2013, ACS applied materials & interfaces.

[94]  F. Béguin,et al.  Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis , 2001 .

[95]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[96]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[97]  Pankaj,et al.  Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance , 2017, Ionics.

[98]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[99]  E. Frąckowiak,et al.  Alkali metal iodide/carbon interface as a source of pseudocapacitance , 2011 .

[100]  A. Arof,et al.  Durian shell-based activated carbon electrode for EDLCs , 2016, Ionics.

[101]  Huaihe Song,et al.  Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors , 2006 .

[102]  V. Aravindan,et al.  Tube-like carbon for Li-ion capacitors derived from the environmentally undesirable plant: Prosopis juliflora , 2016 .

[103]  Dianzeng Jia,et al.  Electrochemical deposition of Ni(OH)2/CNTs electrode as electrochemical capacitors , 2011 .

[104]  Zhongai Hu,et al.  Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors , 2011 .

[105]  Grzegorz Lota,et al.  Striking capacitance of carbon/iodide interface , 2009 .

[106]  Joonwon Lim,et al.  Direct growth of polyaniline chains from N-doped sites of carbon nanotubes. , 2013, Small.

[107]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[108]  Wolfram Münchgesang,et al.  Supercapacitors specialities - Technology review , 2014 .

[109]  Lili Liu,et al.  Electrode materials for aqueous asymmetric supercapacitors , 2013 .

[110]  H. Fujii,et al.  Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere , 2006 .

[111]  Zhenxing Wang,et al.  Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. , 2015, Small.

[112]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[113]  K. Naoi,et al.  ‘Nanohybrid Capacitor’: The Next Generation Electrochemical Capacitors , 2010 .

[114]  Colin G. Cameron Cold Temperature Optimization of Supercapacitors , 2012 .

[115]  Jim P. Zheng,et al.  Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes , 2012 .

[116]  M. Yilmaz,et al.  Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil , 2017, Journal of Applied Electrochemistry.

[117]  N. Uvarov,et al.  Surface Electrochemical Treatment of Carbon Materials for Supercapacitors , 2010 .

[118]  Limin Guo,et al.  Hollow mesoporous carbon spheres--an excellent bilirubin adsorbent. , 2009, Chemical communications.

[119]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[120]  F. Béguin,et al.  Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content , 2006 .

[121]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[122]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[123]  B. Fang,et al.  Controllable synthesis of hierarchical nanostructured hollow core/mesopore shell carbon for electrochemical hydrogen storage. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[124]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[125]  P. Milani,et al.  Evaluation of hydrogen chemisorption in nanostructured carbon films by near edge X-ray absorption spectroscopy , 2005 .

[126]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[127]  B. S. Amirkhiz,et al.  Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors , 2012 .

[128]  Zhiyi Lu,et al.  Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. , 2011, Chemical communications.

[129]  Jae-won Lee,et al.  CVD grown graphene/CNT composite as additive material to improve the performance of electric double layer capacitors (EDLCs) , 2017, Journal of Materials Science: Materials in Electronics.

[130]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[131]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[132]  Bin Xu,et al.  Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors , 2007 .

[133]  Guonan Chen,et al.  Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance. , 2015, Chemistry.

[134]  T. Romann,et al.  Influence of the negative potential of molybdenum carbide derived carbon electrode on the in situ synchrotron radiation activated X-ray photoelectron spectra of 1-ethyl-3-methylimidazolium tetrafluoroborate , 2016 .

[135]  Yoichi Hori,et al.  An Interface Converter with Reduced Volt-Ampere Ratings for Battery-Supercapacitor Mixed Systems , 2008 .

[136]  E. Frąckowiak,et al.  Nanotubes based composites rich in nitrogen for supercapacitor application , 2007 .

[137]  E. Frąckowiak,et al.  Hybrid materials for supercapacitor application , 2010 .

[138]  M. Sundaram,et al.  A biopolymer gel-decorated cobalt molybdate nanowafer: effective graft polymer cross-linked with an organic acid for better energy storage , 2016 .

[139]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[140]  Y. Feng,et al.  Carbon Nanotubes for Supercapacitor , 2010, Nanoscale research letters.

[141]  Q. Wang,et al.  Simply incorporating an efficient redox additive into KOH electrolyte for largely improving electrochemical performances , 2016 .

[142]  P. Ajayan,et al.  Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications , 2010 .

[143]  Ning Zhang,et al.  Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance , 2013 .

[144]  F. Béguin,et al.  State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium , 2006 .

[145]  Jianhui Zhu,et al.  3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. , 2014, Small.

[146]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[147]  Kwang Man Kim,et al.  Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor. , 2007, The journal of physical chemistry. B.

[148]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[149]  D. Kang,et al.  Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites , 2011 .

[150]  Jun Li,et al.  Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition , 2010 .

[151]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[152]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[153]  Jean-Michel Vinassa,et al.  Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions , 2009, Microelectron. Reliab..

[154]  Q. Li,et al.  NiMoO4 nanowire @ MnO2 nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors , 2015 .

[155]  Yongyao Xia,et al.  A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-Ion Battery Cathode and Active Carbon , 2005 .

[156]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[157]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[158]  Wei Sun,et al.  Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes , 2010 .

[159]  Lijun Gao,et al.  Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor , 2009 .

[160]  Yafei Zhang,et al.  Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors , 2017 .

[161]  Yong Liu,et al.  Graphene-based nanowire supercapacitors. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[162]  W. D. Widanage,et al.  A Study of Cell-to-Cell Interactions and Degradation in Parallel Strings: Implications for the Battery Management System , 2016 .

[163]  Yiying Wu,et al.  NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution , 2010, Advanced materials.

[164]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[165]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[166]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[167]  François Béguin,et al.  Nanotubular materials as electrodes for supercapacitors , 2002 .

[168]  Bin Cheng,et al.  Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor , 2010 .

[169]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[170]  Yongyao Xia,et al.  Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni ( OH ) 2 ∕ Carbon Nanotube Composites and Activated Carbon , 2006 .

[171]  Khalid Al-Ali,et al.  Mesoporous RF-Xerogels by Facile Hydrothermal Synthesis , 2015 .

[172]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[173]  G. Gutsev,et al.  Graphene oxide films as separators of polyaniline-based supercapacitors , 2014 .

[174]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[175]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[176]  Noel W. Duffy,et al.  The nickel–carbon asymmetric supercapacitor—Performance, energy density and electrode mass ratios , 2008 .

[177]  S. Selladurai,et al.  Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte , 2015 .

[178]  Yongyao Xia,et al.  A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system , 2005 .

[179]  François Béguin,et al.  Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor , 2011 .

[180]  R. Menéndez,et al.  Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. , 2011, Angewandte Chemie.

[181]  Kang Xu,et al.  Correlating Li+ Solvation Sheath Structure with Interphasial Chemistry on Graphite , 2012 .

[182]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[183]  H. Hatori,et al.  Supercapacitors Prepared from Melamine-Based Carbon , 2005 .

[184]  M. Käärik,et al.  A structural influence on the electrical double-layer characteristics of Al4C3-derived carbon , 2010 .

[185]  Yen‐Po Lin,et al.  High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating , 2009 .

[186]  Kunfeng Chen,et al.  Colloidal supercapacitor electrode materials , 2016 .

[187]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[188]  E. Frąckowiak,et al.  Effect of pore size distribution of coal-based activated carbons on double layer capacitance , 2005 .

[189]  D. Bélanger,et al.  Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes , 2011 .

[190]  K. Friedrich,et al.  A dual mesopore C-aerogel electrode for a high energy density supercapacitor , 2016 .

[191]  H. Yoon,et al.  Nanostructured Electrode Materials for Electrochemical Capacitor Applications , 2015, Nanomaterials.

[192]  Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors , 2017 .

[193]  Yongyao Xia,et al.  Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor , 2007 .

[194]  P. Simon,et al.  Activated Carbon/Conducting Polymer Hybrid Supercapacitors , 2003 .

[195]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[196]  Yu. V. Kudashova,et al.  Single-layer graphene oxide films on a silicon surface , 2013, Technical Physics.

[197]  Xuli Chen,et al.  Carbon-based supercapacitors for efficient energy storage , 2017 .

[198]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[199]  R. Kötz,et al.  Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits , 2012 .

[200]  Chi-Chang Hu,et al.  Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples , 2013 .

[201]  Oh Seok Kwon,et al.  Systematic investigation on charge storage behaviour of multidimensional poly(3,4-ethylenedioxythiophene) nanostructures , 2014 .

[202]  Y. Gogotsi,et al.  Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors , 2014 .

[203]  David T. Gethin,et al.  Large-area printed supercapacitor technology for low-cost domestic green energy storage , 2017 .

[204]  Seong Chu Lim,et al.  High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole , 2002 .

[205]  Josef Sikula,et al.  Voltage Dependence of Supercapacitor Capacitance , 2016 .

[206]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[207]  Alain Celzard,et al.  Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance , 2002 .

[208]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[209]  A. Govindaraj,et al.  Graphene-based electrochemical supercapacitors , 2008 .

[210]  Michael Keller,et al.  Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells , 2010, Sensors.

[211]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[212]  Hiroshi Inoue,et al.  Electrochemical Characterization of a Hybrid Capacitor with Zn and Activated Carbon Electrodes , 2007 .

[213]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[214]  Jaan Leis,et al.  The advanced carbide-derived carbon based supercapacitor , 2006 .

[215]  W. Hu,et al.  Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. , 2012, Chemical communications.

[216]  Shuichi Ishimoto,et al.  High-Voltage Asymmetric Electrochemical Capacitor Based on Polyfluorene Nanocomposite and Activated Carbon , 2008 .

[217]  M. Ozimek,et al.  Polymer membranes as separators for supercapacitors , 2014 .

[218]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[219]  Haijun Yu,et al.  Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability , 2012 .

[220]  A. Pandolfo,et al.  Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode , 2012 .

[221]  Long Hao,et al.  Carbonaceous Electrode Materials for Supercapacitors , 2013, Advanced materials.

[222]  A. Yoshino,et al.  Development of a Lithium-Type Advanced Energy Storage Device , 2004 .

[223]  F. Béguin,et al.  Supercapacitors : materials, systems, and applications , 2013 .

[224]  K. Jurewicz,et al.  KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption , 2008 .

[225]  Gengchao Wang,et al.  Stretchable fluoroelastomer quasi-solid-state organic electrolyte for high-performance asymmetric flexible supercapacitors , 2016 .

[226]  J. A. Ritter,et al.  Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels , 1999 .

[227]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[228]  Daniel Moga,et al.  Modeling and Sizing of Supercapacitors , 2008 .

[229]  H. Hatori,et al.  Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors , 2006 .

[230]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[231]  O. Ayyad,et al.  Hybrid organic–inorganic materials: from child’s play to energy applications , 2010 .

[232]  G. Lu,et al.  Nitrogen‐Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance , 2009 .