Attracted by long-range electron correlation: adenine on graphite.

The adsorption of adenine on graphite is analyzed from first-principles calculations as a model case for the interaction between organic molecules and chemically inert surfaces. Within density-functional theory we find no chemical bonding due to ionic or covalent interactions, only a very weak attraction at distances beyond the equilibrium position due to the lowering of the kinetic energy of the valence electrons. Electron exchange and correlation effects are much more important for the stabilization of the adsystem. They are modeled by the local density or generalized gradient approximation supplemented by the London dispersion formula for the van der Waals interaction.