On color-critical (P5, co-P5)-free graphs
暂无分享,去创建一个
Chính T. Hoàng | Frédéric Maffray | Angèle M. Hamel | Harjinder S. Dhaliwal | Tyler J. D. McConnell | Stefan A. Panait | A. Hamel | Frédéric Maffray | C. Hoàng | H. Dhaliwal
[1] Frédéric Maffray,et al. On 3-Colorable P5-Free Graphs , 2012, SIAM J. Discret. Math..
[2] Ingo Schiermeyer,et al. 3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..
[3] Dennis Saleh. Zs , 2001 .
[4] Vadim V. Lozin,et al. Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.
[5] Vassilis Giakoumakis,et al. Weighted Parameters in (P5, P5)-free Graphs , 1997, Discret. Appl. Math..
[6] Dominique de Werra,et al. Four classes of perfectly orderable graphs , 1987, J. Graph Theory.
[7] Chính T. Hoàng,et al. Polynomial-time algorithms for minimum weighted colorings of ($P_5, \bar{P}_5$)-free graphs and related graph classes , 2014, ArXiv.
[8] Zsolt Tuza,et al. Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.
[9] Frederic Maire,et al. On graphs without P5 and P5_ , 1995, Discret. Math..
[10] Joe Sawada,et al. On k-critical P5-free graphs , 2013, Electron. Notes Discret. Math..
[11] Joe Sawada,et al. A Certifying Algorithm for 3-Colorability of P5-Free Graphs , 2009, ISAAC.
[12] Vadim V. Lozin,et al. A Note on k-Colorability of P5-Free Graphs , 2008, MFCS.
[13] Chính T. Hoàng,et al. Polynomial-time algorithms for minimum weighted colorings of ()-free graphs and similar graph classes , 2015, Discret. Appl. Math..
[14] D E Knuth,et al. Mathematics and Computer Science: Coping with Finiteness , 1976, Science.