On univoque Pisot numbers

We study Pisot numbers $\beta \in (1, 2)$ which are univoque, i.e., such that there exists only one representation of $1$ as $1 = \sum_{n \geq 1} s_n\beta^{-n}$, with $s_n \in \{0, 1\}$. We prove in particular that there exists a smallest univoque Pisot number, which has degree $14$. Furthermore we give the smallest limit point of the set of univoque Pisot numbers.

[1]  David W. Boyd,et al.  On the beta expansion for Salem numbers of degree 6 , 1996, Math. Comput..

[2]  Vilmos Komornik,et al.  Unique Developments in Non-Integer Bases , 1998 .

[3]  David W. Boyd Pisot numbers in the neighborhood of a limit point. II , 1984 .

[4]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[5]  David W. Boyd Pisot and Salem numbers in intervals of the real line , 1978 .

[6]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[7]  Vilmos Komornik,et al.  Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .

[8]  Susanne Kopte,et al.  and Related Problems , 1997 .

[9]  R. Salem,et al.  Power series with integral coefficients , 1945 .

[10]  J. Dufresnoy,et al.  Étude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d'entiers algébriques , 1955 .

[11]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[12]  Jeffrey Shallit,et al.  The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.

[13]  Mohamed Amara Ensembles fermés de nombres algébriques , 1964 .

[14]  David W. Boyd Salem numbers of degree four have periodic expansions , 1989 .

[15]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .

[16]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[17]  Graham,et al.  Sequences and their Applications , 2002, Discrete Mathematics and Theoretical Computer Science.

[18]  David W. Boyd,et al.  Pisot Numbers in the Neighbourhood of a Limit Point, I , 1985 .

[19]  Jean-Paul Allouche Théorie des nombres et automates , 1983 .

[20]  W. Parry On theβ-expansions of real numbers , 1960 .

[21]  Peter Borwein,et al.  Computational Excursions in Analysis and Number Theory , 2002 .

[22]  Jean-Paul Allouche,et al.  Non-Integer Bases, Iteration of Continuous Real Maps, and an Arithmetic Self-Similar set , 2001 .

[23]  Vilmos Komornik,et al.  The smallest univoque number is not isolated , 2003 .

[24]  M. Schützenberger,et al.  The equation $a^M=b^Nc^P$ in a free group. , 1962 .

[25]  David W. Boyd,et al.  On beta expansions for Pisot numbers , 1996, Math. Comput..

[26]  Jean-Paul Allouche,et al.  The Komornik-Loreti Constant is Transcendental , 2000, Am. Math. Mon..

[27]  Nikita Sidorov,et al.  UNIQUE REPRESENTATIONS OF REAL NUMBERS IN NON-INTEGER BASES , 2001 .

[28]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[29]  K. Dajani,et al.  From greedy to lazy expansions and their driving dynamics , 2002 .