Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans

The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWCON and AWCOFF. However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWCON neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWCON phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWCON phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWCON neuron to regulate the AWCOFF identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWCON cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWCOFF identity.

[1]  S. Jiang,et al.  Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology , 2011, The Journal of cell biology.

[2]  Kunihiro Matsumoto,et al.  Regulation of Anoxic Death in Caenorhabditis elegans by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins , 2011, Genetics.

[3]  Cori Bargmann,et al.  The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. , 2010, Genes & development.

[4]  Y. Goshima,et al.  Genes Required for Cellular UNC-6/Netrin Localization in Caenorhabditis elegans , 2010, Genetics.

[5]  Emily K. Lehrman,et al.  Two Cyclin-Dependent Kinase Pathways Are Essential for Polarized Trafficking of Presynaptic Components , 2010, Cell.

[6]  Robert W. Taylor,et al.  Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development , 2010, Development.

[7]  L. Tsai,et al.  MicroTUB(B3)ules and Brain Development , 2010, Cell.

[8]  T. Meitinger,et al.  Human TUBB3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, and Axon Guidance , 2010, Cell.

[9]  Andrew R. Gehrke,et al.  Transcriptional regulation and stabilization of left-right neuronal identity in C. elegans. , 2009, Genes & development.

[10]  R. Berro,et al.  Kinesin KIF4 Regulates Intracellular Trafficking and Stability of the Human Immunodeficiency Virus Type 1 Gag Polyprotein , 2008, Journal of Virology.

[11]  A. Grierson,et al.  Role of axonal transport in neurodegenerative diseases. , 2008, Annual review of neuroscience.

[12]  Cornelia I Bargmann,et al.  Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans , 2007, Neural Development.

[13]  D. Keays,et al.  Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A) , 2007, Human mutation.

[14]  Cori Bargmann,et al.  An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans , 2007, Cell.

[15]  A. R. Palmer,et al.  Left-right patterning from the inside out: widespread evidence for intracellular control. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  Steve D. M. Brown,et al.  Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans , 2007, Cell.

[17]  Oliver Hobert,et al.  Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans , 2006, Current Biology.

[18]  Cornelia I. Bargmann,et al.  The Claudin Superfamily Protein NSY-4 Biases Lateral Signaling to Generate Left-Right Asymmetry in C. elegans Olfactory Neurons , 2006, Neuron.

[19]  J. Demer,et al.  Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. , 2005, Investigative ophthalmology & visual science.

[20]  Cori Bargmann,et al.  A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. , 2005, Genes & development.

[21]  C. Schwartz,et al.  Dense Core Vesicle Dynamics in Caenorhabditis elegans Neurons and the Role of Kinesin UNC‐104 , 2004, Traffic.

[22]  B. Bowerman,et al.  Roles for two partially redundant alpha-tubulins during mitosis in early Caenorhabditis elegans embryos. , 2004, Cell motility and the cytoskeleton.

[23]  Y. Ohshima,et al.  The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons. , 2004, Journal of molecular biology.

[24]  S. Thitamadee,et al.  Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. , 2004, Plant & cell physiology.

[25]  C. Hunter,et al.  Mutations in a beta-tubulin disrupt spindle orientation and microtubule dynamics in the early Caenorhabditis elegans embryo. , 2003, Molecular biology of the cell.

[26]  Chenggang Lu,et al.  The Caenorhabditis elegans microtubule-severing complex MEI-1/MEI-2 katanin interacts differently with two superficially redundant beta-tubulin isotypes. , 2003, Molecular biology of the cell.

[27]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[28]  Oliver Hobert,et al.  A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. , 2003, Genes & development.

[29]  J. Bessereau,et al.  GABA Is Dispensable for the Formation of Junctional GABA Receptor Clusters in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[30]  O. Hobert,et al.  Left–right asymmetry in the nervous system: the Caenorhabditis elegans model , 2002, Nature Reviews Neuroscience.

[31]  D. Ginty,et al.  Retrograde neurotrophin signaling: Trk-ing along the axon , 2002, Current Opinion in Neurobiology.

[32]  S. Thitamadee,et al.  Microtubule basis for left-handed helical growth in Arabidopsis , 2002, Nature.

[33]  R. Chisholm,et al.  Cytoplasmic dynein-associated structures move bidirectionally in vivo. , 2002, Journal of cell science.

[34]  Cori Bargmann,et al.  SEK‐1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans , 2002, EMBO reports.

[35]  J. Scholey,et al.  Direct Visualization of the Movement of the Monomeric Axonal Transport Motor UNC-104 along Neuronal Processes in LivingCaenorhabditis elegans , 2001, The Journal of Neuroscience.

[36]  K. Csiszȧr,et al.  A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. , 2001, Genomics.

[37]  Cori Bargmann,et al.  The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates , 2001, Cell.

[38]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[39]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[40]  K. Pfister,et al.  Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. , 2000, Biochimica et biophysica acta.

[41]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[42]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[43]  M. Nonet,et al.  Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions , 1999, Journal of Neuroscience Methods.

[44]  N. Hirokawa,et al.  Left-Right Asymmetry and Kinesin Superfamily Protein KIF3A: New Insights in Determination of Laterality and Mesoderm Induction by kif3A− /− Mice Analysis , 1999, The Journal of cell biology.

[45]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[46]  N. Hirokawa,et al.  Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria , 1998, Cell.

[47]  Cori Bargmann,et al.  The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons , 1998, Neuron.

[48]  Y. Berwald‐Netter,et al.  A Novel CNS Gene Required for Neuronal Migration and Involved in X-Linked Subcortical Laminar Heterotopia and Lissencephaly Syndrome , 1998, Cell.

[49]  I. Scheffer,et al.  doublecortin , a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein , 1998, Cell.

[50]  D. Supp,et al.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice , 1997, Nature.

[51]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  N. Hirokawa,et al.  The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors , 1995, Cell.

[53]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[54]  P. Meluh,et al.  Kinesin-related proteins required for assembly of the mitotic spindle , 1992, The Journal of cell biology.

[55]  S. Brenner,et al.  A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Hall,et al.  Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans , 1991, Cell.

[57]  M. Chalfie,et al.  Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity , 1989, The Journal of cell biology.

[58]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[59]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  H. Lipkin Where is the ?c? , 1978 .

[61]  A. Represa,et al.  Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria , 2011 .

[62]  M. Koonce,et al.  BMC Cell Biology BioMed Central Research article Disruption of Four Kinesin Genes in Dictyostelium , 2008 .

[63]  O. Hobert,et al.  Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. , 2006, Cold Spring Harbor symposia on quantitative biology.

[64]  AN VIRGILMURES,et al.  One axon , many kinesins : What ’ s the logic ? , 2001 .

[65]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[66]  Andrew Fire,et al.  Chapter 19 DNA Transformation , 1995 .

[67]  N. MaruyamaI,et al.  Caenorhabditis elegansのunc‐13遺伝子がコードするホルボールエステル/ジアシルグリセロール結合蛋白質 , 1991 .

[68]  R. Porter,et al.  DNA transformation. , 1988, Methods in enzymology.

[69]  H. Spencer The structure of the nervous system. , 1870 .