Transparent ferroelectric crystals with ultrahigh piezoelectricity

[1]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[2]  Bo Wang,et al.  Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method , 2019, Annual Review of Materials Research.

[3]  Xiaoning Jiang,et al.  Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals under alternating current poling , 2019, Applied Physics Letters.

[4]  Jacob L. Jones,et al.  Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal poled using alternating current , 2018, Materials Research Letters.

[5]  P. Gehring,et al.  The relation of local order to material properties in relaxor ferroelectrics , 2018, Nature Materials.

[6]  K. Zhao,et al.  Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer , 2018 .

[7]  D. Sette,et al.  Transparent piezoelectric transducers for large area ultrasonic actuators , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[8]  Ilya Grinberg,et al.  Slush-like polar structures in single-crystal relaxors , 2017, Nature.

[9]  Zhenxiang Cheng,et al.  The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals , 2016, Nature Communications.

[10]  K. Shung,et al.  Transparent Lead lanthanum zirconate titanate (PLZT) ceramic fibers for High-frequency Ultrasonic Transducer Applications. , 2016, Ceramics international.

[11]  Monika Ritsch-Marte,et al.  Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here fo , 2016, Lab on a chip.

[12]  Ralph Roskies,et al.  Bridges: a uniquely flexible HPC resource for new communities and data analytics , 2015, XSEDE.

[13]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[14]  S. Alpay,et al.  Misfit strain phase diagrams of epitaxial PMN–PT films , 2015 .

[15]  W. Kleemann Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds , 2014, Progress in Advanced Dielectrics.

[16]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[17]  Wenwu Cao,et al.  Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. , 2014, Progress in materials science.

[18]  Fei Li,et al.  Achieving single domain relaxor-PT crystals by high temperature poling , 2014 .

[19]  Fei Li,et al.  Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals , 2013 .

[20]  A. Tagantsev,et al.  Enhanced electromechanical response of ferroelectrics due to charged domain walls , 2012, Nature Communications.

[21]  Y. Ikuhara,et al.  Real-time direct observations of polarization reversal in a piezoelectric crystal: Pb(Mg1/3Nb2/3)O3-PbTiO3 studied via in situ electrical biasing transmission electron microscopy. , 2011, Physical review letters.

[22]  A. Ding,et al.  Large Electro-Optic Effect in La-Doped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 Transparent Ceramic by Two-Stage Sintering , 2010 .

[23]  W. Cao,et al.  Optimization of piezoelectric properties for [001]c poled 0.94Pb(Zn1∕3Nb2∕3)O3–0.06PbTiO3 single crystals , 2010 .

[24]  Lihong V. Wang Multiscale photoacoustic microscopy and computed tomography. , 2009, Nature photonics.

[25]  Dragan Damjanovic Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  R. Shukla,et al.  Erratum: “Complete sets of elastic, dielectric and piezoelectric properties of [001]-poled Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 single crystals of [110]-length cut” [Appl. Phys. Lett.92, 212907 (2008)] , 2009 .

[27]  J. Hlinka,et al.  The piezoelectric response of nanotwinned BaTiO3 , 2009, Nanotechnology.

[28]  N. Setter,et al.  Piezoelectric response and free-energy instability in the perovskite crystals Ba Ti O 3 , Pb Ti O 3 , and Pb ( Zr , Ti ) O 3 , 2006, cond-mat/0604410.

[29]  Martin Frenz,et al.  Transparent ITO coated PVDF transducer for optoacoustic depth profiling , 2005 .

[30]  Takaaki Tsurumi,et al.  Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes , 2005 .

[31]  Danyang Wang,et al.  Refractive indices and linear electro-optic properties of (1−x)Pb(Mg1∕3Nb2∕3)O3−xPbTiO3 single crystals , 2004 .

[32]  A. Saxena,et al.  Domain-size dependence of piezoelectric properties of ferroelectrics , 2004, cond-mat/0410403.

[33]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[34]  Xinming Wan,et al.  Optical properties of (1-x)Pb(Mg1∕3Nb2∕3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry , 2004 .

[35]  Tong-Yi Zhang,et al.  Phase-field simulations of ferroelectric/ferroelastic polarization switching , 2004 .

[36]  C. Choy,et al.  Investigation on optical transmission spectra of (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals , 2004 .

[37]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[38]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[39]  Werner Kaminsky,et al.  An automatic optical imaging system for birefringent media , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[41]  V. Shvartsman,et al.  Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy , 2004 .

[42]  Bernard Jaffe,et al.  CHAPTER 11 – MANUFACTURE OF PIEZOELECTRIC CERAMICS , 1971 .