Crystallographic Groups, Strictly Tessellating Polytopes, and Analytic Eigenfunctions
暂无分享,去创建一个
Julie Rowlett | Max Blom | Henrik Nordell | Oliver Thim | Jack Vahnberg | J. Rowlett | M. Blom | Henrik Nordell | Oliver Thim | Jack Vahnberg
[1] Wilhelm Killing,et al. Die Zusammensetzung der stetigen endlichen Transformationsgruppen , 1888 .
[2] E. V. Chuprunov,et al. n-dimensional space groups and regular point systems , 1988 .
[3] Zhen Zhen,et al. Graphene: Fundamental research and potential applications , 2017 .
[4] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[5] B. Farkas,et al. On Fuglede's Conjecture and the Existence of Universal Spectra , 2006, math/0612016.
[6] R. Courant,et al. Methoden der mathematischen Physik , .
[7] Nicolas Bourbaki,et al. Groupes et algèbres de Lie , 1971 .
[8] J. E. Chisholm,et al. International Tables for Crystallography, Vol. A: Space-group Symmetry , 1984, Mineralogical Magazine.
[9] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[10] K. Novoselov,et al. A roadmap for graphene , 2012, Nature.
[11] H. Brown,et al. Crystallographic Groups of Four-Dimensional Space , 1978 .
[12] A. Schönflies. Ueber Gruppen von Bewegungen , 1887 .
[13] J. Kappraff. Symmetry of the Plane , 2001 .
[14] R. Young,et al. Mechanical properties of graphene and graphene-based nanocomposites , 2017 .
[15] L. Bieberbach,et al. Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich , 1912 .
[16] Nicolas Bourbaki,et al. Eléments de Mathématique , 1964 .
[17] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[18] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[19] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[20] L. Bieberbach,et al. Über die Bewegungsgruppen der Euklidischen Räume , 1911 .
[21] Owen Jones,et al. The Grammar of Ornament , 1988 .
[22] Mihail N. Kolountzakis,et al. Complex Hadamard matrices and the spectral set conjecture , 2004 .
[23] Bent Fuglede,et al. Commuting self-adjoint partial differential operators and a group theoretic problem , 1974 .
[24] Harold R. Parks,et al. A Primer of Real Analytic Functions , 1992 .
[25] Terence Tao,et al. Fuglede's conjecture is false in 5 and higher dimensions , 2003, math/0306134.
[26] M. Matolcsi. Fuglede’s conjecture fails in dimension 4 , 2005, math/0611936.
[27] Spectres et groupes cristallographiques I: Domaines euclidiens , 1980 .
[28] John Bamberg,et al. The Crystallographic Restriction, Permutations, and Goldbach's Conjecture , 2003, Am. Math. Mon..
[29] Safaa A. Elsherif,et al. Revolution of Graphene for different applications: State-of-the-art , 2017 .
[30] The Fuglede conjecture for convex domains is true in all dimensions , 2019, 1904.12262.
[31] Nir Lev,et al. Fuglede's spectral set conjecture for convex polytopes , 2016, 1602.08854.
[32] M. Matolcsi,et al. Tiles with no spectra , 2004, math/0406127.
[33] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[34] J. Bamberg,et al. The Crystallographic Restriction, Permutations, and Goldbach's Conjecture , 2003 .
[35] M BrianJ.,et al. On Polygonal Domains with Trigonometric Eigenfunctions of the Laplacian under Dirichlet or Neumann Boundary Conditions , 2008 .
[36] G. Folland. Fourier analysis and its applications , 1992 .
[37] T. Tao,et al. The Fuglede spectral conjecture holds for convex planar domains , 2003 .