Application of Evolutionary Algorithm for Triobjective Optimization: Electric Vehicle

For Electric Vehicles (EVs), Weight and losses reduction are important factors not only in reducing the energy consumption and cost but also in increasing autonomy. This paper describes the application of an evolutionary algorithm for multiobjective optimization in the traction chain (TC) of pure EV. In this study, the optimisation algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA-II) and the fitness function is defined so as to minimize the electric vehicle cost (EVC), the electric vehicle weight (EVW) and the losses in the electric vehicle (EVL). Also, in this study, different requirements are considered as constraints like the efficiency of the permanent magnets engine, the number of conductor in the slots, the winding temperature…The simulation results show the effectiveness of the approach and reduction in EVC, EVW and EVL while ensuring that the electric vehicle performance is not sacrificed.

[1]  Morteza Montazeri-Gh,et al.  Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles , 2006, J. Frankl. Inst..

[2]  R. Neji,et al.  Real Coded Genetic Algorithm for Permanent Magnet Motor Mass Minimization for Electric Vehicle Application , 2007, 2007 International Symposium on Computational Intelligence and Intelligent Informatics.

[3]  Weifang Zhai,et al.  Niche Genetic Algorithm Based on Sexual Reproduction and Multimodal Function Optimization Problem , 2011, Int. J. Adv. Pervasive Ubiquitous Comput..

[4]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[5]  Rafik Neji,et al.  A Comparative Study of Two Permanent Magnet Motors Structures with Interior and Exterior Rotor , 2010 .

[6]  L. Vido Étude d'actionneurs électriques à double excitation destinés au transport : dimensionnement de structures synchrones , 2004 .

[7]  Harijaona Lalao Rakotoarison Méthode et outil de génération automatique de modèle pour l’optimisation fortement contrainte des microsystèmes magnétiques , 2007 .

[8]  Victor Mester Conception Optimale Systémique des Composants des Chaînes de Traction Electrique , 2007 .

[9]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[10]  Walmir M. Caminhas,et al.  Parallel layer perceptron , 2003, Neurocomputing.

[11]  Laurent Gasc Conception d'un actionneur à aimants permanents à faibles ondulations de couple pour assistance de direction automobile. Approches par la structure et par la commande , 2004 .

[12]  Pandian Vasant,et al.  Sustaining Power Resources through Energy Optimization and Engineering , 2016 .

[13]  Ivan Zelinka,et al.  Use of Simulated Annealing for Adaptive Control System , 2013, Int. J. Energy Optim. Eng..

[14]  Rajib Mall,et al.  Parallel Single and Multiple Objectives Genetic Algorithms: A Survey , 2015 .

[15]  Djohra Saheb Koussa,et al.  Study of Autonomous Wind Energy Systems with Battery Storage (AWESBS) for Mountainous Rural Area Electrification in Algeria , 2015, Int. J. Energy Optim. Eng..

[16]  Jérémi Régnier Conception de systèmes hétérogènes en génie électrique par optimisation évolutionnaire multicritère , 2003 .

[17]  Michael Affenzeller,et al.  Probabilistic Electric Vehicle Charging Optimized With Genetic Algorithms and a Two-Stage Sampling Scheme , 2013, Int. J. Energy Optim. Eng..

[18]  Provas Kumar Roy,et al.  Optimal Reactive Power Dispatch Incorporating TCSC-TCPS Devices Using Different Evolutionary Optimization Techniques , 2016 .

[19]  N. Selvaganesan,et al.  Fuzzy Based Modeling, Control, and Fault Diagnosis of Permanent Magnet Synchronous Generator , 2013 .