Pseudo‐Anosov stretch factors and homology of mapping tori

We consider the pseudo-Anosov elements of the mapping class group of a surface of genus g that fix a rank k subgroup of the first homology of the surface. We show that the smallest entropy among these is comparable to (k+1)/g. This interpolates between results of Penner and of Farb and the second and third authors, who treated the cases of k=0 and k=2g, respectively, and answers a question of Ellenberg. We also show that the number of conjugacy classes of pseudo-Anosov mapping classes as above grows (as a function of g) like a polynomial of degree k.

[1]  David Fried Flow equivalence, hyperbolic systems and a new zeta function for flows , 1982 .

[2]  The lower central series and pseudo-Anosov dilatations , 2006, math/0603675.

[3]  Dehn surgery, homology and hyperbolic volume , 2005, math/0508208.

[4]  Jin-Hwan Cho,et al.  The Minimal Dilatation of a Genus-Two Surface , 2008, Exp. Math..

[5]  David Fried Transitive Anosov flows and pseudo-Anosov maps , 1983 .

[6]  S. Matsumoto Topological entropy and Thurston's norm of atoroidal surface bundles over the circle , 1987 .

[7]  Jeffrey F. Brock The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores , 2001 .

[8]  Jean-Marc Schlenker The renormalized volume and the volume of the convex core of quasifuchsian manifolds , 2011, 1109.6663.

[9]  Surface groups and 3-manifolds which fiber over the circle , 1998, math/9801045.

[10]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[11]  Nathan M. Dunfield,et al.  Closed surface bundles of least volume , 2010, 1002.3423.

[12]  E. Hironaka Small dilatation mapping classes coming from the simplest hyperbolic braid , 2009, 0909.4517.

[13]  Jeffrey F. Brock,et al.  Inflexibility, Weil-Petersson distance, and volumes of fibered 3-manifolds , 2014, 1412.0733.

[14]  David Gabai,et al.  Minimum volume cusped hyperbolic three-manifolds , 2007, 0705.4325.

[15]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[16]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[17]  G. Robert Meyerhoff,et al.  The orientable cusped hyperbolic 3-manifolds of minimum volume , 2001 .

[18]  F. R. Gantmakher The Theory of Matrices , 1984 .

[19]  C. Leininger,et al.  On the number and location of short geodesics in moduli space , 2011, 1110.6434.

[20]  Curtis T. McMullen,et al.  Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations , 2000 .

[21]  T. Gelander Volume versus rank of lattices , 2011 .

[22]  G. McShane,et al.  Normalized entropy versus volume for pseudo-Anosovs , 2014, 1411.6350.

[23]  Benson Farb,et al.  A Primer on Mapping Class Groups (Pms-49) , 2011 .

[24]  A. Lubotzky,et al.  Counting arithmetic lattices and surfaces , 2008, 0811.2482.

[25]  R. Penner Bounds on least dilatations , 1991 .

[26]  William P. Thurston,et al.  A norm for the homology of 3-manifolds , 1986 .

[27]  E. Kin,et al.  Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior , 2010, 1003.0545.