Internal symmetry in the constitutive model of perfect elastoplasticity
暂无分享,去创建一个
[1] H. Hong,et al. Integral-equation representations of flow elastoplasticity derived from rate-equation models , 1993 .
[2] Chein-Shan Liu,et al. Lorentz group SOo(5, 1) for perfect elastoplasticity with large deformation and a consistency numerical scheme , 1999 .
[3] G. Naber. The geometry of Minkowski spacetime , 1992 .
[4] W. Prager,et al. A NEW METHOD OF ANALYZING STRESSES AND STRAINS IN WORK - HARDENING PLASTIC SOLIDS , 1956 .
[5] J. F. Cornwell. Group theory in physics , 1984 .
[6] Hong-Ki Hong,et al. Internal symmetry in bilinear elastoplasticity , 1999 .
[7] Chein-Shan Liu,et al. On behavior of perfect elastoplasticity under rectilinear paths , 1998 .
[8] A. Reuss,et al. Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie , 1930 .
[9] J. C. Simo,et al. Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .
[10] William Prager,et al. The Theory of Plasticity: A Survey of Recent Achievements , 1955 .
[11] Prandtl-Reuss elastoplasticity: On-off switch and superposition formulae , 1997 .