CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA

Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.

[1]  R. Terns,et al.  Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. , 2008, RNA.

[2]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[3]  V. Kunin,et al.  CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea , 2008, Nature Reviews Microbiology.

[4]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[5]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[6]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[7]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[8]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[9]  F. Lowy,et al.  Antimicrobial-resistant bacteria in the community setting , 2006, Nature Reviews Microbiology.

[10]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[11]  S. Webb,et al.  Nosocomial bacterial infections in Intensive Care Units. I: Organisms and mechanisms of antibiotic resistance , 2005, Anaesthesia.

[12]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[13]  Samuel V. Angiuoli,et al.  Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain , 2005, Journal of bacteriology.

[14]  R. Garrett,et al.  Identification of novel non‐coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus , 2004, Molecular microbiology.

[15]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[16]  BMC Bioinformatics , 2005 .

[17]  D. Dubnau,et al.  DNA uptake during bacterial transformation , 2004, Nature Reviews Microbiology.

[18]  J. Shetty,et al.  Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus , 2003, Science.

[19]  A. Danchin,et al.  Genome‐based analysis of virulence genes in a non‐biofilm‐forming Staphylococcus epidermidis strain (ATCC 12228) , 2003, Molecular microbiology.

[20]  G. Peters,et al.  Pathogenesis of infections due to coagulase-negative staphylococci. , 2002, The Lancet. Infectious diseases.

[21]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Landthaler,et al.  Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. Lowy Staphylococcus aureus infections. , 2009, The New England journal of medicine.

[24]  G. Archer,et al.  Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1 , 1996, Journal of bacteriology.

[25]  J. L. Johnston,et al.  Characterization of a conjugative staphylococcal mupirocin resistance plasmid , 1995, Antimicrobial agents and chemotherapy.

[26]  S. Ehrlich,et al.  Replication origin of a single‐stranded DNA plasmid pC194. , 1989, The EMBO journal.

[27]  S. Ehrlich,et al.  Rolling circle replication of single‐stranded DNA plasmid pC194. , 1987, The EMBO journal.

[28]  B. Weisblum,et al.  Post-transcriptional Regulation of Chloramphenicol Acetyl Transferase , 1984, Journal of bacteriology.

[29]  M. O'Reilly,et al.  The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage , 1983, Nature.

[30]  S. Horinouchi,et al.  Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance , 1982, Journal of bacteriology.

[31]  A. Simpson,et al.  Anaesthesia , 1946 .