Sensitivity analysis of nondifferentiable sums of singular values of rectangular matrices

Let K(x) be an s-by-r rectangular matrix depending on a parameter x e E and denote by g(x) the sum of its m largest singular values (1 ≤ m ≤ Min{s,r}). If K(x) depends affinely on x, then g is a nondifferentiable convex function. In this paper we consider first the affine case and give some formulas for the conjugate, subdifferential, and e-subdifferential of g. These formulas are then used to obtain perturbation bounds for g(x). We study next the nonaffine case and discuss some questions related with the regularity, generalized subdifferentiability, and directional differentiability of g.

[1]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[2]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[3]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[4]  J. Hiriart-Urruty New concepts in nondifferentiable programming , 1979 .

[5]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[6]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[7]  J. Spingarn Submonotone subdifferentials of Lipschitz functions , 1981 .

[8]  Elijah Polak,et al.  Nondifferentiable optimization algorithm for designing control systems having singular value inequalities , 1982, Autom..

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  R. Correa,et al.  Directional derivative of a minimax function , 1985 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[13]  B. Gollan EIGENVALUE PERTURBATIONS AND NONLINEAR PARAMETRIC OPTIMIZATION , 1987 .

[14]  M. Overton On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .

[15]  M. Overton,et al.  On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory , 1988 .

[16]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[17]  Bernard Rousselet,et al.  Continuité et différentiabilité d'Éléments propres: Application à l'optimisation de structures , 1990 .

[18]  B. Rousselet,et al.  Dependence of the buckling load of a nonshallow arch with respect to the shape of its midcurve , 1990 .

[19]  Michael L. Overton,et al.  On the Sum of the Largest Eigenvalues of a Symmetric Matrix , 1992, SIAM J. Matrix Anal. Appl..

[20]  D. Ye Sensitivity analysis of the greatest eigenvalue of a symmetric matrix via the ɛ-subdifferential of the associated convex quadratic form , 1993 .