In vitro and in vivo antibiofilm activity of the synthetic antimicrobial peptide WLBU2 against multiple drug resistant Pseudomonas aeruginosa strains

[1]  M. Saki,et al.  Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran , 2022, Molecular Biology Reports.

[2]  M. Modarressi,et al.  Antimicrobial and anti-biofilm potencies of dermcidin-derived peptide DCD-1L against Acinetobacter baumannii: an in vivo wound healing model , 2022, BMC Microbiology.

[3]  A. Fazel,et al.  Detecting of biofilm formation in the clinical isolates of Pseudomonas aeruginosa and Escherichia coli: an evaluation of different screening methods , 2021, Journal of Current Biomedical Reports.

[4]  Xue Han,et al.  Trp-Containing Antibacterial Peptides Impair Quorum Sensing and Biofilm Development in Multidrug-Resistant Pseudomonas aeruginosa and Exhibit Synergistic Effects With Antibiotics , 2021, Frontiers in Microbiology.

[5]  A. Karimi,et al.  Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran , 2020, Iranian journal of basic medical sciences.

[6]  M. Yasir,et al.  Activity of Antimicrobial Peptides and Ciprofloxacin against Pseudomonas aeruginosa Biofilms , 2020, Molecules.

[7]  Z. Zeng,et al.  Antimicrobial Peptide Cec4 Eradicates the Bacteria of Clinical Carbapenem-Resistant Acinetobacter baumannii Biofilm , 2020, Frontiers in Microbiology.

[8]  W. Hanpithakpong,et al.  A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa , 2020, Scientific Reports.

[9]  R. Lai,et al.  The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection , 2019, Proceedings of the National Academy of Sciences.

[10]  Seong-Cheol Park,et al.  Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm , 2019, Molecules.

[11]  Zhi-Ye Zhang,et al.  Antimicrobial peptides: new hope in the war against multidrug resistance , 2019, Zoological research.

[12]  H. Safari,et al.  Advanced strategies for combating bacterial biofilms , 2019, Journal of cellular physiology.

[13]  Yoonkyung Park,et al.  Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus , 2019, AMB Express.

[14]  A. Almaaytah,et al.  Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae , 2019, Infection and drug resistance.

[15]  F. Fallah,et al.  Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid Children’s Hospital, Tehran, Iran: 2013–2018 , 2019, Infection and drug resistance.

[16]  M. Yasir,et al.  Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa , 2019, Scientific Reports.

[17]  Tongtong Liu,et al.  Anti-bacterial activity of mutant chensinin-1 peptide against multidrug-resistant Pseudomonas aeruginosa and its effects on biofilm-associated gene expression , 2019, Experimental and therapeutic medicine.

[18]  B. Allegranzi,et al.  Control of Carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-experimental Studies , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  R. Montelaro,et al.  Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. , 2018, International journal of antimicrobial agents.

[20]  I. Nabipour,et al.  Identification of novel antimicrobial peptide from Asian sea bass (Lates calcarifer) by in silico and activity characterization , 2018, PloS one.

[21]  C. Deber,et al.  Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms , 2018, Scientific Reports.

[22]  I. Nabipour,et al.  Identification and Characterization of Novel Antimicrobial Peptide from Hippocampus comes by In Silico and Experimental Studies , 2018, Marine Biotechnology.

[23]  R. Montelaro,et al.  Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. , 2017, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[24]  J. Goldberg,et al.  The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer , 2017, PLoS pathogens.

[25]  J. Pilewski,et al.  Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells. , 2016, The Journal of antimicrobial chemotherapy.

[26]  A. Holm,et al.  Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages , 2015, Front. Microbiol..

[27]  Carmen Ferrándiz-Millón,et al.  Optimum treatment strategies for carbapenem-resistant Acinetobacter baumannii bacteremia , 2015, Expert review of anti-infective therapy.

[28]  S. Gorr,et al.  Antimicrobial Peptide GL13K Is Effective in Reducing Biofilms of Pseudomonas aeruginosa , 2013, Antimicrobial Agents and Chemotherapy.

[29]  W. Zeng,et al.  Inhibition of Pseudomonas aeruginosa biofilm formation with Bromoageliferin analogues. , 2007, Journal of the American Chemical Society.

[30]  M. Deeg,et al.  Naturally Processed Dermcidin-Derived Peptides Do Not Permeabilize Bacterial Membranes and Kill Microorganisms Irrespective of Their Charge , 2006, Antimicrobial Agents and Chemotherapy.

[31]  B. Iglewski,et al.  Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. , 2002, FEMS microbiology letters.

[32]  B. Iglewski,et al.  Quorum-Sensing Genes in Pseudomonas aeruginosa Biofilms: Their Role and Expression Patterns , 2001, Applied and Environmental Microbiology.

[33]  H. Rohde,et al.  Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. , 2010, European journal of cell biology.

[34]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[35]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .