A quantitative model for presynaptic free Ca2+ dynamics during different stimulation protocols

The presynaptic free Ca2+ dynamics of neurons due to various stimulation protocols is investigated in a mathematical model. The model includes Ca2+ influx through voltage-dependent Ca2+ channels, Ca2+ buffering by endogenous and exogenous buffers as well as Ca2+ efflux through ATP-driven plasma membrane Ca2+ pumps and Na+/Ca2+ exchangers. We want to support a specific way of modeling which starts on the level of single proteins. Each protein is represented by characteristics that are determined by single protein experiments and that are considered to be widely independent of neuron types. This allows the applications of the model to different classes of neurons and experiments. The procedure is demonstrated for single boutons of pyramidal neurons of the rat neocortex. The corresponding fluorescence measurements of Koester and Sakmann (J. Physiol. 529 (2000) 625) are quantitatively reproduced. The model enables us to reconstruct the free Ca2+ dynamics in neurons as it would have been without fluorescence indicators starting from the fluorescence data. We discuss the different Ca2+ responses and find that during high-frequency stimulation an accumulation of free Ca2+ occurs above some threshold stimulation frequency. The threshold frequency depends on the amount of fluorescence indicator used in the experiment.

[1]  D. Menick,et al.  Purification and Characterization of the Ca-ATPase of Flavobacterium odoratum(*) , 1996, The Journal of Biological Chemistry.

[2]  R. Dipolo,et al.  Metabolic pathways in the regulation of invertebrate and vertebrate Na+/Ca2+ exchange. , 1999, Biochimica et biophysica acta.

[3]  A. G. Filoteo,et al.  Plasma Membrane Ca2+ Pump Isoforms 2a and 2b Are Unusually Responsive to Calmodulin and Ca2+ * , 1997, The Journal of Biological Chemistry.

[4]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Ernesto Camfoli THE CALCIUM PUMPING ATPase OF THE PLASMA MEMBRANE , 1991 .

[6]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Keizer,et al.  Effect of Ca2+ influx on intracellular free Ca2+ responses in antigen-stimulated RBL-2H3 cells. , 1996, The American journal of physiology.

[8]  P. Saggau,et al.  Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. , 1997, Biophysical journal.

[9]  J. T. Penniston,et al.  Plasma Membrane Ca2+ Pump Isoform 3f Is Weakly Stimulated by Calmodulin* , 2000, The Journal of Biological Chemistry.

[10]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[11]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[12]  E E Strehler Plasma membrane Ca2+ pumps and Na+/Ca2+ exchangers. , 1990, Seminars in cell biology.

[13]  J. Lehotský,et al.  Plasma membrane Ca(2+)-pump functional specialization in the brain. Complex of isoform expression and regulation by effectors. , 1995, Molecular and chemical neuropathology.

[14]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[15]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[16]  Strehler Ee,et al.  Plasma membrane Ca2+ pumps and Na+/Ca2+ exchangers. , 1990 .

[17]  W G Regehr,et al.  Optical measurement of presynaptic calcium currents. , 1998, Biophysical journal.

[18]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[19]  R. Zucker,et al.  Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  C. Govind,et al.  Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. , 1996, Journal of neurophysiology.

[21]  Z Bajzer,et al.  The Plasma Membrane Calcium Pump Displays Memory of Past Calcium Spikes , 2001, The Journal of Biological Chemistry.

[22]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[23]  R. Tsien Calcium channels in excitable cell membranes. , 1983, Annual review of physiology.

[24]  N. Milgram,et al.  Frequency dependence of long‐term potentiation and depression in the dentate gyrus of the freely moving rat , 1996, Hippocampus.

[25]  E Carafoli,et al.  The calcium pumping ATPase of the plasma membrane. , 1991, Annual review of physiology.

[26]  Daniel Johnston,et al.  Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators , 1989, Neuron.

[27]  D. Nicholls,et al.  Intracellular calcium homeostasis. , 1986, British medical bulletin.

[28]  H. Atwood,et al.  Synaptic recruitment during long‐term potentiation at synapses of the medial perforant pathway in the dentate gyrus of the rat brain , 1996, Synapse.

[29]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[30]  J. T. Penniston,et al.  Modulation of the Plasma Membrane Ca2+ Pump , 1998, The Journal of Membrane Biology.

[31]  E. F. Stanley,et al.  Location of calcium transporters at presynaptic terminals , 2000, The European journal of neuroscience.

[32]  P. Smolen,et al.  Calcium dynamics in large neuronal models , 1998 .

[33]  D. Johnston,et al.  Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. , 1990, Journal of neurophysiology.

[34]  Nils Brose,et al.  Differential Control of Vesicle Priming and Short-Term Plasticity by Munc13 Isoforms , 2002, Neuron.

[35]  R. Llinás,et al.  Calcium in synaptic transmission. , 1982, Scientific American.

[36]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[37]  A. G. Filoteo,et al.  Plasma Membrane Calcium Pump Isoform 4a Has a Longer Calmodulin-Binding Domain Than 4b (*) , 1996, The Journal of Biological Chemistry.

[38]  S. Duckles,et al.  Mechanisms of calcium buffering in adrenergic neurones and effects of ageing: testing the limits of homeostasis. , 2000, Journal of autonomic pharmacology.

[39]  A. G. Filoteo,et al.  A highly active 120-kDa truncated mutant of the plasma membrane Ca2+ pump. , 1993, The Journal of biological chemistry.

[40]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[41]  R S Zucker,et al.  Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. , 1985, Biophysical journal.

[42]  B. Sakmann,et al.  Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel–Vesicle Topography , 2002, The Journal of Neuroscience.

[43]  E Carafoli,et al.  The Ca2+ pump of the plasma membrane. , 1992, The Journal of biological chemistry.

[44]  W Singer,et al.  Different threshold levels of postsynaptic [Ca2+]i have to be reached to induce LTP and LTD in neocortical pyramidal cells , 1996, Journal of Physiology-Paris.

[45]  Joel Keizer,et al.  Eeects of Rapid Buuers on Ca 2+ Diiusion and Ca 2+ Oscillations , 1994 .

[46]  C. Klee,et al.  Ca2+-dependent phospholipid- (and membrane-) binding proteins. , 1988, Biochemistry.

[47]  W. Singer,et al.  Relation Between Dendritic Ca2+ Levels and the Polarity of Synaptic Long‐term Modifications in Rat Visual Cortex Neurons , 1997, The European journal of neuroscience.

[48]  B. Bean,et al.  Classes of calcium channels in vertebrate cells. , 1989, Annual review of physiology.

[49]  Walther Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .

[50]  K Takahashi,et al.  Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 pyramidal neurons. , 1991, Journal of neurophysiology.

[51]  R. Foehring,et al.  Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons. , 1995, Journal of neurophysiology.

[52]  P. Belan,et al.  Calcium clamp in isolated neurones of the snail Helix pomatia. , 1993, The Journal of physiology.

[53]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[54]  M J Davis,et al.  Whole-cell and single-channel calcium currents in guinea pig basal forebrain neurons. , 1994, Journal of neurophysiology.

[55]  A. G. Filoteo,et al.  Calmodulin-binding domains from isozymes of the plasma membrane Ca2+ pump have different regulatory properties. , 1991, The Journal of biological chemistry.

[56]  J. Keizer,et al.  Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. , 1994, Biophysical journal.

[57]  P. Belan,et al.  Calcium clamp in single nerve cells. , 1993, Cell calcium.

[58]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[59]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[60]  A. Brown,et al.  Calcium current‐dependent and voltage‐dependent inactivation of calcium channels in Helix aspersa , 1981, The Journal of physiology.

[61]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[62]  R S Zucker,et al.  Effects of mobile buffers on facilitation: experimental and computational studies. , 2000, Biophysical journal.

[63]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[64]  B E Alger,et al.  Single calcium channels in rat and guinea‐pig hippocampal neurons. , 1991, The Journal of physiology.

[65]  R S Zucker,et al.  Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Htet Htet Aung,et al.  Plasma Membrane Ca2+ Pump in Rat Brain , 1997, The Journal of Biological Chemistry.

[67]  M Segal,et al.  Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. , 1999, Journal of neurophysiology.

[68]  Rodolfo R. Llinás,et al.  The Squid Giant Synapse , 1984 .

[69]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[70]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[71]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[72]  D. Pietrobon,et al.  Functional Diversity of P-Type and R-Type Calcium Channels in Rat Cerebellar Neurons , 1996, The Journal of Neuroscience.

[73]  J. Pearson,et al.  Saltatory propagation of Ca2+ waves by Ca2+ sparks. , 1998, Biophysical journal.

[74]  P Hess,et al.  Calcium channels in vertebrate cells. , 1990, Annual review of neuroscience.

[75]  Ernesto Carafoli,et al.  Calcium signaling: A tale for all seasons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  D. Prince,et al.  Printed in Great Britain , 2005 .

[77]  D. Nicoll,et al.  Sodium-calcium exchange. , 1992, Current opinion in cell biology.

[78]  R. Zucker,et al.  Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. , 1982, The Journal of physiology.

[79]  J. Keizer,et al.  Validity of the rapid buffering approximation near a point source of calcium ions. , 1996, Biophysical journal.

[80]  E Marder,et al.  Activity-dependent current distributions in model neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[81]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[82]  J E Lisman,et al.  A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. , 1994, Journal of neurophysiology.

[83]  N. Klugbauer,et al.  Low voltage activated calcium channels: from genes to function. , 2000, General physiology and biophysics.

[84]  C. Stevens,et al.  The kinetics of transmitter release at the frog neuromuscular junction , 1972, The Journal of physiology.

[85]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[86]  Joe Z Tsien,et al.  Linking Hebb’s coincidence-detection to memory formation , 2000, Current Opinion in Neurobiology.

[87]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[88]  Arthur Sherman,et al.  New and corrected simulations of synaptic facilitation. , 2002, Biophysical journal.

[89]  John E. Pearson,et al.  Saltatory Propagation of Ca 2+ Waves by Ca 2+ Sparks , 1998 .

[90]  M. Planck,et al.  Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte , 1890 .

[91]  R J Miller,et al.  Regulation of calcium homoeostasis in neurons: the role of calcium-binding proteins. , 1995, Biochemical Society transactions.

[92]  J. Connor,et al.  Calcium signals in long-term potentiation and long-term depression. , 1999, Canadian journal of physiology and pharmacology.

[93]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[94]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[95]  B. Roufogalis,et al.  The plasma membrane calcium pump--a physiological perspective on its regulation. , 1995, Cell calcium.

[96]  J L van Hemmen,et al.  Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. , 1995, Journal of neurophysiology.