Nonreciprocal charge transport and subharmonic structure in voltage-biased Josephson diodes

We study charge transport in voltage-biased single-channel junctions involving helical superconductors with finite Cooper pair momentum. For a Josephson junction, the equilibrium current-phase relation shows a superconducting diode effect: the critical current depends on the propagation direction. We formulate a scattering theory for voltage-biased Josephson diodes and show that multiple Andreev reflection processes cause a rich subharmonic structure in the DC current-voltage curve at low temperatures and small voltages due to Doppler shifts of the spectral gap. In the current-biased case, the diode efficiency has maximal rectification efficiency $\eta_0\approx 0.4$ for this model. In the voltage-biased case, however, the rectification efficiency can reach the ideal value $\eta=1$. We also discuss charge transport for NS junctions between a normal metal and a helical superconductor and comment on related models with spin-orbit interactions and magnetic Zeeman fields.

[1]  Erratum for the Research Article: "Universal Josephson diode effect". , 2023, Science advances.

[2]  Muhammad Nadeem,et al.  The superconducting diode effect , 2023, Nature Reviews Physics.

[3]  T. Martin,et al.  Approaching ideal rectification in superconducting diodes through multiple Andreev reflections , 2023, 2307.14698.

[4]  N. Gusev,et al.  Finite momentum superconductivity in superconducting hybrids: Orbital mechanism , 2023, Physical Review B.

[5]  A. Zaikin,et al.  Josephson dynamics at high transmissions: Perturbation theory , 2023, Physical Review B.

[6]  A. Daido,et al.  Orbital effect on intrinsic superconducting diode effect , 2023, 2305.19317.

[7]  N. Yuan Surface supercurrent diode effect , 2023, 2305.04219.

[8]  M. Manfra,et al.  Gate-tunable Josephson diode in proximitized InAs supercurrent interferometers , 2023, Physical Review Research.

[9]  Q. Cheng,et al.  Josephson diode based on conventional superconductors and a chiral quantum dot , 2023, Physical Review B.

[10]  Y. Lyanda-Geller,et al.  Superconducting diode effect in quasi-one-dimensional systems , 2023, Physical Review B.

[11]  D. Loss,et al.  Parity-protected superconducting diode effect in topological Josephson junctions , 2023, Physical Review B.

[12]  M. Manfra,et al.  Sign reversal of the Josephson inductance magnetochiral anisotropy and 0–π-like transitions in supercurrent diodes , 2022, Nature Nanotechnology.

[13]  A. Daido,et al.  Intrinsic superconducting diode effect in disordered systems , 2022, 2212.09211.

[14]  F. von Oppen,et al.  Diode Effects in Current-Biased Josephson Junctions. , 2022, Physical review letters.

[15]  C. Winkelmann,et al.  Diode effect in Josephson junctions with a single magnetic atom , 2022, Nature.

[16]  Yukio Tanaka,et al.  The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes , 2022, Nature communications.

[17]  Y. Ang,et al.  Field-Effect Josephson Diode via Asymmetric Spin-Momentum Locking States , 2022, 2212.01980.

[18]  Y. Maeno,et al.  Spontaneous superconducting diode effect in non-magnetic Nb/Ru/Sr_2RuO_4 topological junctions , 2022, Communications Physics.

[19]  E. Bakkers,et al.  The gate-tunable Josephson diode , 2022, 2211.14283.

[20]  F. Giazotto,et al.  A gate- and flux-controlled supercurrent diode effect , 2022, Applied Physics Letters.

[21]  P. Burset,et al.  Tunable Josephson Diode Effect on the Surface of Topological Insulators. , 2022, Physical review letters.

[22]  T. Palstra,et al.  Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor , 2022, Nature.

[23]  F. Bergeret,et al.  Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions , 2022, Physical Review B.

[24]  Congjun Wu,et al.  Symmetry Constraints on Direct-Current Josephson Diodes , 2022, 2209.12646.

[25]  A. Daido,et al.  Superconducting diode effect and nonreciprocal transition lines , 2022, Physical Review B.

[26]  D. Mikhailov,et al.  Asymmetric higher-harmonic SQUID as a Josephson diode , 2022, Physical Review B.

[27]  S. Heun,et al.  Josephson Diode Effect in High-Mobility InSb Nanoflags , 2022, Nano letters.

[28]  A. Jauho,et al.  Anomalous Josephson current through a driven double quantum dot , 2022, Physical Review B.

[29]  A. Yeyati,et al.  Dynamical parity selection in superconducting weak links , 2022, Physical Review B.

[30]  Y. Lyanda-Geller,et al.  Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors , 2022, Nature Communications.

[31]  K. Jeon,et al.  Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier , 2022, Nature Materials.

[32]  C. Palmstrøm,et al.  Gate-tunable superconducting diode effect in a three-terminal Josephson device , 2022, Nature communications.

[33]  M. Manfra,et al.  Control of Andreev Bound States Using Superconducting Phase Texture. , 2022, Physical review letters.

[34]  Yukio Tanaka,et al.  Theory of giant diode effect in d -wave superconductor junctions on the surface of a topological insulator , 2022, Physical Review B.

[35]  D. Loss,et al.  Superconducting diode effect due to magnetochiral anisotropy in topological insulators and Rashba nanowires , 2022, Physical Review B.

[36]  J. Moodera,et al.  Ubiquitous Superconducting Diode Effect in Superconductor Thin Films. , 2022, Physical review letters.

[37]  M. Leijnse,et al.  Josephson Diode Effect in Supercurrent Interferometers. , 2022, Physical review letters.

[38]  M. Davydova,et al.  Universal Josephson diode effect , 2022, Science advances.

[39]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[40]  Jiangping Hu,et al.  General Theory of Josephson Diodes , 2021, Physical Review X.

[41]  J. Hone,et al.  Zero-field superconducting diode effect in small-twist-angle trilayer graphene , 2021, Nature Physics.

[42]  M. Sigrist,et al.  Symmetry conditions for the superconducting diode effect in chiral superconductors , 2021, Physical Review Research.

[43]  Klaus Halterman,et al.  Supercurrent diode effect, spin torques, and robust zero-energy peak in planar half-metallic trilayers , 2021, Physical Review B.

[44]  Kenji Watanabe,et al.  Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2 , 2021, Nature Communications.

[45]  S. Ilic,et al.  Theory of the Supercurrent Diode Effect in Rashba Superconductors with Arbitrary Disorder. , 2021, Physical review letters.

[46]  Yukio Tanaka,et al.  A phenomenological theory of superconductor diodes , 2021, New Journal of Physics.

[47]  A. Daido,et al.  Intrinsic Superconducting Diode Effect. , 2021, Physical review letters.

[48]  L. Fu,et al.  Supercurrent diode effect and finite-momentum superconductors , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[49]  W. Kwok,et al.  Superconducting diode effect via conformal-mapped nanoholes , 2021, Nature Communications.

[50]  Yujia Zeng,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2021, Nature.

[51]  M. Manfra,et al.  Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.

[52]  I. Žutić,et al.  Cubic spin-orbit coupling and anomalous Josephson effect in planar junctions , 2021, 2101.08272.

[53]  T. Ono,et al.  Observation of superconducting diode effect , 2020, Nature.

[54]  N. Nagaosa,et al.  Theory of the nonreciprocal Josephson effect , 2020, Physical Review B.

[55]  Y. Tokura,et al.  Nonreciprocal responses from non-centrosymmetric quantum materials , 2018, Nature Communications.

[56]  P. Lucignano,et al.  Anomalous Josephson effect in S/SO/F/S heterostructures , 2018, Physical Review B.

[57]  T. Morimoto,et al.  Nonreciprocal current from electron interactions in noncentrosymmetric crystals: roles of time reversal symmetry and dissipation , 2017, Scientific Reports.

[58]  R. Tenne,et al.  Superconductivity in a chiral nanotube , 2017, Nature Communications.

[59]  E. Bakkers,et al.  Josephson ϕ0-junction in nanowire quantum dots , 2015, Nature Physics.

[60]  P. Lucignano,et al.  Spin–orbit coupling and anomalous Josephson effect in nanowires , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  A. Yeyati,et al.  Quasiparticle trapping, Andreev level population dynamics, and charge imbalance in superconducting weak links , 2014, 1407.7991.

[62]  R. Egger,et al.  Anomalous Josephson current, incipient time-reversal symmetry breaking, and Majorana bound states in interacting multilevel dots , 2013, 1305.3816.

[63]  G. Usaj,et al.  Spin-orbit induced chirality of Andreev states in Josephson junctions , 2012, 1212.2786.

[64]  T. Martin,et al.  Anomalous Josephson current through a spin-orbit coupled quantum dot. , 2009, Physical review letters.

[65]  Y. Blanter,et al.  Quantum Transport: Introduction to Nanoscience , 2009 .

[66]  G. Usaj,et al.  Anomalous Josephson current in junctions with spin polarizing quantum point contacts. , 2008, Physical review letters.

[67]  A. Buzdin Direct coupling between magnetism and superconducting current in the Josephson phi0 junction. , 2008, Physical review letters.

[68]  X. Dai,et al.  Proposed design of a Josephson diode. , 2007, Physical review letters.

[69]  T. Martin,et al.  Josephson current through a quantum dot with spin-orbit coupling , 2006, cond-mat/0609577.

[70]  T. Martin,et al.  Superconducting transport through a vibrating molecule , 2006, cond-mat/0603209.

[71]  V. Shumeiko,et al.  Dynamics and phonon-induced decoherence of Andreev level qubit , 2004, cond-mat/0404656.

[72]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[73]  S. Datta,et al.  ac Josephson effect for asymmetric superconducting junctions , 1997 .

[74]  A. Yeyati,et al.  Hamiltonian approach to the transport properties of superconducting quantum point contacts. , 1996, Physical review. B, Condensed matter.

[75]  V. M. Edelstein The Ginzburg - Landau equation for superconductors of polar symmetry , 1996 .

[76]  D. Averin,et al.  ac Josephson Effect in a Single Quantum Channel. , 1995, Physical review letters.

[77]  V. Shumeiko,et al.  Theory of subharmonic gap structure in superconducting mesoscopic tunnel contacts. , 1995, Physical review letters.

[78]  C. Beenakker,et al.  Josephson current through a superconducting quantum point contact shorter than the coherence length. , 1991, Physical review letters.

[79]  M. Tsukada,et al.  Current-carrying states in Josephson junctions. , 1991, Physical review. B, Condensed matter.

[80]  G. Blonder,et al.  Explanation of subharmonic energy gap structure in superconducting contacts , 1982 .

[81]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[82]  W. Marsden I and J , 2012 .