Soft body locomotion

We present a physically-based system to simulate and control the locomotion of soft body characters without skeletons. We use the finite element method to simulate the deformation of the soft body, and we instrument a character with muscle fibers to allow it to actively control its shape. To perform locomotion, we use a variety of intuitive controls such as moving a point on the character, specifying the center of mass or the angular momentum, and maintaining balance. These controllers yield an objective function that is passed to our optimization solver, which handles convex quadratic program with linear complementarity constraints. This solver determines the new muscle fiber lengths, and moreover it determines whether each point of contact should remain static, slide, or lift away from the floor. Our system can automatically find an appropriate combination of muscle contractions that enables a soft character to fulfill various locomotion tasks, including walking, jumping, crawling, rolling and balancing.

[1]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[2]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[3]  Gavin S. P. Miller,et al.  The motion dynamics of snakes and worms , 1988, SIGGRAPH.

[4]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[5]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[6]  K. Bathe Finite Element Procedures , 1995 .

[7]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[8]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[9]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[10]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[11]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[12]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[13]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[14]  Dinesh K. Pai,et al.  Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects , 2003, TOGS.

[15]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[16]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[17]  John E. Mitchell,et al.  A Semidefinite Programming Heuristic for Quadratic Programming Problems with Complementarity Constraints , 2005, Comput. Optim. Appl..

[18]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, ACM Trans. Graph..

[19]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[20]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[21]  Eugene Fiume,et al.  Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion , 2005, SCA '05.

[22]  Yohan Payan,et al.  Efficient, Physically Plausible Finite Elements , 2005, Eurographics.

[23]  Ken-ichi Anjyo,et al.  Directable animation of elastic objects , 2005, SCA '05.

[24]  Victor B. Zordan,et al.  Breathe easy: Model and control of human respiration for computer animation , 2006, Graph. Model..

[25]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, SIGGRAPH 2006.

[26]  Kenny Erleben,et al.  Velocity-based shock propagation for multibody dynamics animation , 2007, TOGS.

[27]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[28]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[29]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[30]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, SIGGRAPH 2007.

[31]  Jernej Barbic,et al.  Real-time control of physically based simulations using gentle forces , 2008, ACM Trans. Graph..

[32]  Jing Hu,et al.  On the Global Solution of Linear Programs with Linear Complementarity Constraints , 2008, SIAM J. Optim..

[33]  Klaus-Jürgen Bathe,et al.  Finite Element Method , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[34]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.

[35]  Dinesh K. Pai,et al.  Staggered projections for frictional contact in multibody systems , 2008, SIGGRAPH 2008.

[36]  Victor B. Zordan,et al.  Laughing out loud: control for modeling anatomically inspired laughter using audio , 2008, SIGGRAPH 2008.

[37]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[38]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[39]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..

[40]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, ACM Trans. Graph..

[41]  Markus H. Gross,et al.  Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.

[42]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[43]  Volume contact constraints at arbitrary resolution , 2010, SIGGRAPH 2010.

[44]  Christian Duriez,et al.  Volume contact constraints at arbitrary resolution , 2010, ACM Trans. Graph..

[45]  Nancy S. Pollard,et al.  Fast simulation of skeleton-driven deformable body characters , 2011, TOGS.

[46]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[47]  Junggon Kim,et al.  Direct Control of Simulated Nonhuman Characters , 2011 .

[48]  Global Resolution of Convex Programs with Complementarity Constraints , 2011 .

[49]  John E. Mitchell,et al.  On convex quadratic programs with linear complementarity constraints , 2013, Comput. Optim. Appl..

[50]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .