Glutamate-gated Chloride Channels*

Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily.

[1]  B. Hines,et al.  A reappraisal of the relative sensitivity of nematode pharyngeal and somatic musculature to macrocyclic lactone drugs. , 2012, International journal for parasitology. Drugs and drug resistance.

[2]  M. Riga,et al.  The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. , 2012, Insect biochemistry and molecular biology.

[3]  Elizabeth A. Kane,et al.  Balance of Activity between LNvs and Glutamatergic Dorsal Clock Neurons Promotes Robust Circadian Rhythms in Drosophila , 2012, Neuron.

[4]  W. Campbell History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. , 2012, Current pharmaceutical biotechnology.

[5]  Yan Fu,et al.  Annotation of the Transcriptome from Taenia pisiformis and Its Comparative Analysis with Three Taeniidae Species , 2012, PloS one.

[6]  K. Matsuda,et al.  Amino acid residues of both the extracellular and transmembrane domains influence binding of the antiparasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. , 2012, Biochemical and biophysical research communications.

[7]  L. Kruglyak,et al.  Natural Variation in a Chloride Channel Subunit Confers Avermectin Resistance in C. elegans , 2012, Science.

[8]  J. Clark,et al.  Ivermectin Acts as a Posteclosion Nymphicide by Reducing Blood Feeding of Human Head Lice (Anoplura: Pediculidae) that Hatched from Treated Eggs , 2011, Journal of medical entomology.

[9]  J. Lynch,et al.  Molecular Determinants of Ivermectin Sensitivity at the Glycine Receptor Chloride Channel* , 2011, The Journal of Biological Chemistry.

[10]  M. Sauerbrey,et al.  Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan(®)) monotherapy. , 2011, Acta tropica.

[11]  S. Buckingham,et al.  Glutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans , 2011, PloS one.

[12]  Eric Gouaux,et al.  Principles of activation and permeation in an anion-selective Cys-loop receptor , 2011, Nature.

[13]  G. Cao,et al.  Synchronized Bilateral Synaptic Inputs to Drosophila melanogaster Neuropeptidergic Rest/Arousal Neurons , 2011, The Journal of Neuroscience.

[14]  A. Christie,et al.  Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior , 2011, Journal of Experimental Biology.

[15]  I. Mori,et al.  Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans , 2011, The EMBO journal.

[16]  David J. Anderson,et al.  Functional identification of an aggression locus in the mouse hypothalamus , 2010, Nature.

[17]  T. Geary,et al.  Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi , 2010, Proceedings of the National Academy of Sciences.

[18]  J. Lynch,et al.  A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. , 2010, International journal for parasitology.

[19]  Jun Liu,et al.  Allosteric potentiation of glycine receptor chloride currents by glutamate , 2010, Nature Neuroscience.

[20]  A. Wolstenholme,et al.  Nematode parasite genes: what's in a name? , 2010, Trends in parasitology.

[21]  T. Narahashi,et al.  Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals. , 2010, Pesticide biochemistry and physiology.

[22]  D. M. Soderlund,et al.  The ligand-gated chloride channel gene family of Drosophila melanogaster , 2010 .

[23]  V. Salgado,et al.  The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides , 2010 .

[24]  J. Rigo,et al.  Cys-loop ligand-gated chloride channels in dorsal unpaired median neurons of Locusta migratoria. , 2010, Journal of neurophysiology.

[25]  D. Sattelle,et al.  The cys-loop ligand-gated ion channel gene superfamily of the parasitoid wasp, Nasonia vitripennis , 2010, Heredity.

[26]  A. Wolstenholme,et al.  Functional consequences of mutations in the Drosophila histamine receptor HCLB , 2010, Journal of insect physiology.

[27]  M. Anctil Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. , 2009, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[28]  H. Horvitz,et al.  Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans , 2009, Science.

[29]  P. Bregestovski,et al.  Aplysia cys-loop Glutamate-Gated Chloride Channels Reveal Convergent Evolution of Ligand Specificity , 2009, Journal of Molecular Evolution.

[30]  A. Wolstenholme,et al.  An Ivermectin-Sensitive Glutamate-Gated Chloride Channel from the Parasitic Nematode Haemonchus contortus , 2009, Molecular Pharmacology.

[31]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[32]  S. Rademakers,et al.  Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. , 2008, Learning & memory.

[33]  R. Hardie,et al.  Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB , 2008, Invertebrate Neuroscience.

[34]  P. J. Hooper,et al.  The Global Programme to Eliminate Lymphatic Filariasis: Health Impact after 8 Years , 2008, PLoS neglected tropical diseases.

[35]  Roger C. Hardie,et al.  Distinct Roles for Two Histamine Receptors (hclA and hclB) at the Drosophila Photoreceptor Synapse , 2008, The Journal of Neuroscience.

[36]  U. García,et al.  Histamine operates Cl–-gated channels in crayfish neurosecretory cells , 2007, Journal of Experimental Biology.

[37]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[38]  T. Walsh,et al.  The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans , 2007, Invertebrate Neuroscience.

[39]  Andrew K. Jones,et al.  The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum , 2007, BMC Genomics.

[40]  David J. Anderson,et al.  Reversible Silencing of Neuronal Excitability in Behaving Mice by a Genetically Targeted, Ivermectin-Gated Cl− Channel , 2007, Neuron.

[41]  F. Kibenge,et al.  Identification of the genes encoding for putative gamma aminobutyric acid (GABA) and glutamate-gated chloride channel (GluCl) alpha receptor subunits in sea lice (Lepeophtheirus salmonis). , 2007, Journal of veterinary pharmacology and therapeutics.

[42]  J. Rigo,et al.  Dorsal unpaired median neurons of locusta migratoria express ivermectin- and fipronil-sensitive glutamate-gated chloride channels. , 2007, Journal of neurophysiology.

[43]  Jaeseob Kim,et al.  Histamine and Its Receptors Modulate Temperature-Preference Behaviors in Drosophila , 2006, The Journal of Neuroscience.

[44]  L. Holden-Dye,et al.  Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans. , 2006, International journal for parasitology.

[45]  A. Wolstenholme,et al.  Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. , 2006, Molecular and biochemical parasitology.

[46]  A. Wolstenholme,et al.  Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics , 2005, Parasitology.

[47]  C. Pfeffer,et al.  A Novel Chloride Channel in Drosophila melanogaster Is Inhibited by Protons* , 2005, Journal of Biological Chemistry.

[48]  N. Unwin,et al.  Refined structure of the nicotinic acetylcholine receptor at 4A resolution. , 2005, Journal of molecular biology.

[49]  R. E. Silva-López,et al.  Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis , 2005, Parasitology.

[50]  I. Putrenko,et al.  A Family of Acetylcholine-gated Chloride Channel Subunits in Caenorhabditis elegans* , 2005, Journal of Biological Chemistry.

[51]  T. Narahashi,et al.  Fipronil Is a Potent Open Channel Blocker of Glutamate-Activated Chloride Channels in Cockroach Neurons , 2004, Journal of Pharmacology and Experimental Therapeutics.

[52]  R. Prichard,et al.  Mutations in the extracellular domains of glutamate‐gated chloride channel α3 and β subunits from ivermectin‐resistant Cooperia oncophora affect agonist sensitivity , 2004, Journal of neurochemistry.

[53]  G. Kass-simon,et al.  Pacemaker activity in hydra is modulated by glycine receptor ligands. , 2004, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[54]  J. Dent,et al.  Genomic organization of an avermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans. , 2004, Molecular and biochemical parasitology.

[55]  E. Jorgensen,et al.  EXP-1 is an excitatory GABA-gated cation channel , 2003, Nature Neuroscience.

[56]  A. Wolstenholme,et al.  The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. , 2003, International journal for parasitology.

[57]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[58]  A. Wolstenholme,et al.  Distribution of glutamate‐gated chloride channel subunits in the parasitic nematode Haemonchus contortus , 2003, The Journal of comparative neurology.

[59]  L. Avery,et al.  Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes. , 2003, Genetics.

[60]  R. Hardie,et al.  The Target of Drosophila Photoreceptor Synaptic Transmission Is a Histamine-gated Chloride Channel Encoded byort (hclA)* , 2002, The Journal of Biological Chemistry.

[61]  H. Lester,et al.  Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel , 2002, FEBS letters.

[62]  David J. Anderson,et al.  Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels , 2002, The Journal of Neuroscience.

[63]  D. Cully,et al.  Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both gamma-aminobutyric acid-gated Rdl and glutamate-gated GluCl alpha chloride channel subunits. , 2002, Biochemistry.

[64]  R. Beech,et al.  A glutamate-gated chloride channel subunit from Haemonchus contortus: expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. , 2002, Biochemical pharmacology.

[65]  H. Washio Glutamate Receptors on the Somata of Dorsal Unpaired Median Neurons in Cockroach, Periplaneta americana, Thoracic Ganglia , 2002, Zoological science.

[66]  Jeffrey Yuan,et al.  Identification of Two Novel Drosophila melanogaster Histamine-gated Chloride Channel Subunits Expressed in the Eye* , 2002, The Journal of Biological Chemistry.

[67]  W. Pak,et al.  ALTERED DRUG RESISTANCE AND RECOVERY FROM PARALYSIS IN DROSOPHILA MELANOGASTER WITH A DEFICIENT HISTAMINE-GATED CHLORIDE CHANNEL , 2002, Journal of neurogenetics.

[68]  C. Franks,et al.  Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the function of the native receptor. , 2001, Molecular pharmacology.

[69]  D. Sattelle,et al.  GLC‐3: a novel fipronil and BIDN‐sensitive, but picrotoxinin‐insensitive, L‐glutamate‐gated chloride channel subunit from Caenorhabditis elegans , 2001, British journal of pharmacology.

[70]  D. Schmatz,et al.  Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  H. Horvitz,et al.  MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans , 2000, Nature.

[72]  J A Dent,et al.  The genetics of ivermectin resistance in Caenorhabditis elegans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  W. Pak,et al.  Diversification of Drosophila Chloride Channel Gene by Multiple Posttranscriptional mRNA Modifications , 1999, Journal of neurochemistry.

[74]  D. Brownlee,et al.  Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode, Ascaris suum , 1997, Parasitology.

[75]  M. Davis,et al.  avr‐15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans , 1997, The EMBO journal.

[76]  H. Adelsberger,et al.  A patch clamp study of a glutamatergic chloride channel on pharyngeal muscle of the nematode Ascaris suum , 1997, Neuroscience Letters.

[77]  A. Wolstenholme,et al.  Reporter gene constructs suggest that the Caenorhabditis elegans avermectin receptor beta-subunit is expressed solely in the pharynx. , 1997, The Journal of experimental biology.

[78]  K. O. Elliston,et al.  Evolutionary Relationship of the Ligand-Gated Ion Channels and the Avermectin-Sensitive, Glutamate-Gated Chloride Channels , 1997, Journal of Molecular Evolution.

[79]  T. A. Cleland Inhibitory glutamate receptor channels , 1996, Molecular Neurobiology.

[80]  D. Cully,et al.  Identification of a Drosophila melanogaster Glutamate-gated Chloride Channel Sensitive to the Antiparasitic Agent Avermectin* , 1996, The Journal of Biological Chemistry.

[81]  R. Martin,et al.  An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D , 1996, Parasitology.

[82]  H. Wilkinson,et al.  Molecular biology and electrophysiology of glutamategated chloride channels of invertebrates , 1996, Parasitology.

[83]  D. Vassilatis,et al.  Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans , 1994, Nature.

[84]  L. Avery,et al.  Electrical activity and behavior in the pharynx of caenorhabditis elegans , 1994, Neuron.

[85]  L. Avery,et al.  Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. , 1993, The Journal of experimental biology.

[86]  D. Cully,et al.  Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. , 1992, Brain research. Molecular brain research.

[87]  E. Marder,et al.  Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. , 1984, Journal of neurophysiology.

[88]  M Bidaut,et al.  Pharmacological dissection of pyloric network of the lobster stomatogastric ganglion using picrotoxin. , 1980, Journal of neurophysiology.

[89]  P. Usherwood,et al.  Three types of L-glutamate receptor on junctional membrane of locust muscle fibres , 1979, Brain Research.

[90]  E. Marder,et al.  The pharmacological properties of some crustacean neuronal acetylcholine, gamma‐aminobutyric acid, and L‐glutamate responses. , 1978, The Journal of physiology.

[91]  S. Cull-Candy Two types of extrajunctional L‐glutamate receptors in locust muscle fibres. , 1976, The Journal of physiology.

[92]  Claes Andersson Comparison of Automated Technologies to Deliver Brief Alcohol Interventions to University Students , 2012 .

[93]  Elizabeth A. Kane,et al.  Balance of Activity between LNvs and Glutamatergic Dorsal Clock Neurons Promotes Robust Circadian Rhythms in Drosophila , 2012 .

[94]  K. Turksen,et al.  Isolation and characterization , 2006 .

[95]  Hanns Hatt,et al.  Two cDNAs coding for histamine-gated ion channels in D. melanogaster , 2002, Nature Neuroscience.

[96]  D. Ish-Horowicz,et al.  MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C . elegans , 2000 .

[97]  D. Sattelle,et al.  Rothamsted Repository Download , 2022 .