The Cauchy-Dirichlet Problem for the Finitely Extensible Nonlinear Elastic Dumbbell Model of Polymeric Fluids

The finitely extensible nonlinear elastic (FENE) dumbbell model consists of the incompressible Navier--Stokes equation for the solvent and the Fokker--Planck equation for the polymer distribution. In such a model, the polymer elongation cannot exceed a limit $m_0$ which yields all interesting features of solutions near this limit. This work is concerned with the sharpness of boundary conditions in terms of the dimensionless parameter $b=\frac{Hm_0^2}{k_BT}$. Through a careful analysis of the Fokker--Planck operator coupled with the Navier--Stokes equation, we establish a local well-posedness for the full coupled FENE dumbbell model under a class of Dirichlet-type boundary conditions dictated by the parameter $b$. For each $b>0$ we identify a sharp boundary requirement for the underlying density distribution, while the sharpness follows from the existence result for each specification of the boundary behavior. It is shown that the probability density governed by the Fokker--Planck equation approaches zero ...

[1]  Benjamin Jourdain,et al.  MATHEMATICAL ANALYSIS OF A STOCHASTIC DIFFERENTIAL EQUATION ARISING IN THE MICRO-MACRO MODELLING OF POLYMERIC FLUIDS , 2003 .

[2]  Pierre Degond,et al.  Viscoelastic Fluid Models Derived from Kinetic Equations for Polymers , 2002, SIAM J. Appl. Math..

[3]  Cédric Chauvière,et al.  Simulation of dilute polymer solutions using a Fokker–Planck equation , 2004 .

[4]  Lars-Erik Persson,et al.  Weighted Inequalities of Hardy Type , 2003 .

[5]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[6]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[7]  Laurent Chupin,et al.  The FENE Model for Viscoelastic Thin Film Flows , 2009 .

[8]  Ping Zhang,et al.  On a micro‐macro model for polymeric fluids near equilibrium , 2007 .

[9]  Yi Zhou,et al.  Global Solutions for Incompressible Viscoelastic Fluids , 2008, 0901.3658.

[10]  Endre Süli,et al.  Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift , 2009 .

[11]  Yi Zhou,et al.  Global Existence of Classical Solutions for the Two-Dimensional Oldroyd Model via the Incompressible Limit , 2005, SIAM J. Math. Anal..

[12]  Pingwen Zhang,et al.  Global existence of weak solutions to the regularized Hookean dumbbell model , 2008 .

[13]  Jaemin Shin,et al.  GLOBAL WELL-POSEDNESS FOR THE MICROSCOPIC FENE MODEL WITH A SHARP BOUNDARY CONDITION , 2009, 0905.1142.

[14]  J. Saut,et al.  Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type , 1990 .

[15]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[16]  E. Süli,et al.  EXISTENCE OF GLOBAL WEAK SOLUTIONS TO DUMBBELL MODELS FOR DILUTE POLYMERS WITH MICROSCOPIC CUT-OFF , 2008 .

[17]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[18]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[19]  Cédric Chauvière,et al.  Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .

[20]  Ping Zhang,et al.  On hydrodynamics of viscoelastic fluids , 2005 .

[21]  John W. Barrett,et al.  Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains , 2011 .

[22]  Pingwen Zhang,et al.  Well-Posedness for the Dumbbell Model of Polymeric Fluids , 2004 .

[23]  Jean-Yves Chemin,et al.  About Lifespan of Regular Solutions of Equations Related to Viscoelastic Fluids , 2001, SIAM J. Math. Anal..

[24]  Nader Masmoudi,et al.  Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .

[25]  Maria E. Schonbek,et al.  Existence and Decay of Polymeric Flows , 2009, SIAM J. Math. Anal..

[26]  Benjamin Jourdain,et al.  Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows , 2006 .

[27]  Hailiang Liu,et al.  Boundary Conditions for the Microscopic FENE Models , 2008, SIAM J. Appl. Math..

[28]  Jie Shen,et al.  On the Approximation of the Fokker-Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model I: A New Weighted Formulation and an Optimal Spectral-Galerkin Algorithm in Two Dimensions , 2012, SIAM J. Numer. Anal..

[29]  Ping Zhang,et al.  L2 Decay of Solutions to a Micro-Macro Model for Polymeric Fluids Near Equilibrium , 2009, SIAM J. Math. Anal..

[30]  Ping Zhang,et al.  On the Global Existence of Smooth Solution to the 2-D FENE Dumbbell Model , 2007 .

[31]  Pingwen Zhang,et al.  Local Existence for the FENE-Dumbbell Model of Polymeric Fluids , 2004 .

[32]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[33]  Pierre-Louis Lions,et al.  Global existence of weak solutions to some micro-macro models , 2007 .

[34]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[35]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[36]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[37]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[38]  T N Phillips,et al.  Contemporary Topics in Computational Rheology , 2002 .

[39]  Hailiang Liu,et al.  Kinetic models for polymers with inertial effects , 2009, Networks Heterog. Media.

[40]  Nader Masmoudi,et al.  Global Well-Posedness for a Smoluchowski Equation Coupled with Navier-Stokes Equations in 2D , 2008 .

[41]  Ping Zhang,et al.  The FENE dumbbell model near equilibrium , 2008 .

[42]  Ping Zhang,et al.  Global well-posedness for 2D polymeric fluid models and growth estimate , 2008 .

[43]  John W. Barrett,et al.  Existence of Global Weak Solutions to Some Regularized Kinetic Models for Dilute Polymers , 2007, Multiscale Model. Simul..

[44]  Anton Arnold,et al.  Refined long-time asymptotics for some polymeric fluid flow models , 2010 .

[45]  A. Kufner Weighted Sobolev Spaces , 1985 .

[46]  Charles Fefferman,et al.  Regularity of Coupled Two-Dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems , 2006, math/0605245.

[47]  Hailiang Liu,et al.  An Entropy Satisfying Conservative Method for the Fokker-Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model , 2012, SIAM J. Numer. Anal..