Chaotic Polarization-Assisted ${L}$ DPSK-MPPM Modulation for Free-Space Optical Communications

In this paper, we present a polarization-assisted <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-ary differential phase-shift keying multipulse pulse-position modulation (PA.<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK-MPPM) technique that is secured in the physical layer by a discrete-chaos system. The all-optical PA.<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK-MPPM scheme benefits from the polarization as an additional degree of freedom which greatly reduces the system complexity relative to prior implementations. The discrete-chaos scrambling is based on a message-seeded two-dimensional chaotic map tailored for independent perturbation of the occupied time-slot positions (MPPM information) and their relative phase shift (<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK information). Synchronized and non-synchronized implementations of the chaotic PA.<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK-MPPM technique are proposed with expressions for the corresponding spectral efficiencies being determined and compared with prior <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK-MPPM setups. The performance of PA.<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>DPSK-MPPM under gamma-gamma (GG) free-space optical (FSO) fading channels is analytically verified to outperform the prior designs for different FSO channel states which is supplemented by Monte Carlo (MC) simulations. The system security is numerically examined against various types of attacks, including brute-force, differential, and statistical attacks.

[1]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[2]  Hossam M. H. Shalaby,et al.  Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels , 2017, IEEE/OSA Journal of Optical Communications and Networking.

[3]  Bahaa E. A. Saleh,et al.  Orthogonal quasi-phase-matched superlattice for generation of hyperentangled photons , 2017, Scientific Reports.

[4]  Georges Kaddoum,et al.  Permutation Index DCSK Modulation Technique for Secure Multiuser High-Data-Rate Communication Systems , 2018, IEEE Transactions on Vehicular Technology.

[5]  René-Jean Essiambre,et al.  Capacity Trends and Limits of Optical Communication Networks , 2012, Proceedings of the IEEE.

[6]  Atsushi Uchida,et al.  Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. , 2015, Optics express.

[7]  Xiang Liu,et al.  M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission. , 2011, Optics express.

[8]  Salah S. A. Obayya,et al.  Simultaneous Suppression of Time-Delay Signature in Intensity and Phase of Dual-Channel Chaos Communication , 2015, IEEE Journal of Quantum Electronics.

[9]  Yiyuan Xie,et al.  Exploiting Optics Chaos for Image Encryption-Then-Transmission , 2016, Journal of Lightwave Technology.

[10]  Ahmed E. Morra,et al.  Chaotic DPSK-MPPM modulation technique for a physically secure and highly robust optical communication system , 2016, 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES).

[11]  Hossam M. H. Shalaby,et al.  On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels , 2018, Optics Communications.

[12]  Hossam M. H. Shalaby,et al.  Evaluation of power efficiency of hybrid modulation techniques , 2016, 2016 IEEE Photonics Conference (IPC).

[13]  Mostafa Zaman Chowdhury,et al.  A Comparative Survey of Optical Wireless Technologies: Architectures and Applications , 2018, IEEE Access.

[14]  Zbigniew Galias,et al.  Quadrature chaos-shift keying: theory and performance analysis , 2001 .

[15]  Murat Uysal,et al.  Survey on Free Space Optical Communication: A Communication Theory Perspective , 2014, IEEE Communications Surveys & Tutorials.

[16]  Hossam M. H. Shalaby,et al.  Hybrid direct-detection differential phase shift keying-multipulse pulse position modulation techniques for optical communication systems , 2015 .

[17]  Hossam M. H. Shalaby,et al.  Proposal and Performance Evaluation of a Hybrid BPSK-Modified MPPM Technique for Optical Fiber Communications Systems , 2013, Journal of Lightwave Technology.

[18]  Frida Strömqvist Vetelino,et al.  Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. , 2007, Applied optics.

[19]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[20]  Georges Kaddoum,et al.  Design of a Short Reference Noncoherent Chaos-Based Communication Systems , 2016, IEEE Transactions on Communications.

[21]  Lars Keuninckx,et al.  Encryption key distribution via chaos synchronization , 2017, Scientific Reports.

[22]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[23]  Ming Li,et al.  Differential attack on a hyper-chaos-based image cryptosystem with a classic bi-modular architecture , 2016, Nonlinear Dynamics.

[24]  M. Karlsson,et al.  Power-Efficient Modulation Formats in Coherent Transmission Systems , 2009, Journal of Lightwave Technology.

[25]  Hossam M. H. Shalaby,et al.  Performance evaluation of hybrid DBPSK-MPPM technique in long-haul optical transmission , 2016, CLEO 2016.

[26]  Yanhua Hong,et al.  GHz Bandwidth Message Transmission Using Chaotic Vertical-Cavity Surface-Emitting Lasers , 2009, Journal of Lightwave Technology.

[27]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[28]  Hossam M. H. Shalaby,et al.  Proposal of a hybrid OFDM-PPM technique for free space optical communications systems , 2013, 2013 IEEE Photonics Conference.

[29]  S. Chandrasekhar,et al.  Demonstration of Record Sensitivities in Optically Preamplified Receivers by Combining PDM-QPSK and M-Ary Pulse-Position Modulation , 2012, Journal of Lightwave Technology.

[30]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[31]  G. Kolumban,et al.  Differential chaos shift keying : A robust coding for chaotic communication , 1996 .

[32]  Jo Bovy,et al.  Lyapunov Exponents and Strange Attractors in Discrete and Continuous Dynamical Systems , 2004 .

[33]  Yueping Li,et al.  A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation , 2017 .

[34]  Georges Kaddoum,et al.  Wireless Chaos-Based Communication Systems: A Comprehensive Survey , 2016, IEEE Access.

[35]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[36]  Lin Wang,et al.  A New Hierarchical $M$ -ary DCSK Communication System: Design and Analysis , 2017, IEEE Access.

[37]  Simon J. Devitt,et al.  Performing Quantum Computing Experiments in the Cloud , 2016, 1605.05709.

[38]  Georges Kaddoum,et al.  Optical Communication in Space: Challenges and Mitigation Techniques , 2017, IEEE Communications Surveys & Tutorials.

[39]  Maria Kihl,et al.  Inter-vehicle communication systems: a survey , 2008, IEEE Communications Surveys & Tutorials.

[40]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[41]  Jia-Ming Liu,et al.  Chaotic lidar , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[43]  A Argyris,et al.  Transmission Effects in Wavelength Division Multiplexed Chaotic Optical Communication Systems , 2010, Journal of Lightwave Technology.

[44]  Georges Kaddoum,et al.  I-DCSK: An Improved Noncoherent Communication System Architecture , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[45]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[46]  Hossam M. H. Shalaby,et al.  Proposal of a hybrid QAM-MPPM technique for optical communications systems , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[47]  H. M. H. Shalaby,et al.  Performance Analysis of Both Shot- and Thermal-Noise Limited MultiPulse PPM Receivers in Gamma–Gamma Atmospheric Channels , 2013, Journal of Lightwave Technology.

[48]  Wei Pan,et al.  Message Encoding/Decoding Using Unpredictability-Enhanced Chaotic VCSELs , 2012, IEEE Photonics Technology Letters.

[49]  Xiaohong Zhao,et al.  Differential cryptanalysis of a novel image encryption algorithm based on chaos and Line map , 2016, Nonlinear Dynamics.

[50]  Nikolai F. Rulkov,et al.  Digital communication using chaotic-pulse-position modulation , 2001 .

[51]  Rafael F. Schaefer,et al.  Wireless physical layer security , 2016, Proceedings of the National Academy of Sciences.

[52]  Salah S. A. Obayya,et al.  Suppressed time delay signature in chaotic nanolasers with hybrid feedback , 2018, Photonics Europe.

[53]  Salah S. A. Obayya,et al.  A new technique for ultrafast physical random number generation using optical chaos , 2016, SPIE Photonics Europe.

[54]  Hossam M. H. Shalaby Maximum Achievable Constrained Power Efficiencies of MPPM- $L$ QAM Techniques , 2015, IEEE Photonics Technology Letters.

[55]  Yan SenLin Chaotic synchronization of two mutually coupled semiconductor lasers for optoelectronic logic gates , 2012 .

[56]  M. Karlsson,et al.  Generalized pulse-position modulation for optical power-efficient communication , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[57]  Amr Elsonbaty,et al.  Simultaneous concealment of time delay signature in chaotic nanolaser with hybrid feedback , 2018, Optics and Lasers in Engineering.

[58]  Guangchun Luo,et al.  An image encryption scheme based on chaotic tent map , 2016, Nonlinear Dynamics.

[59]  Salah S. A. Obayya,et al.  Time delay signature of chaotic nanolasers and its concealment , 2017, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES).

[60]  Salah S. A. Obayya,et al.  Relative-phase and time-delay maps all over the emission cone of hyperentangled photon source , 2016 .

[61]  Salah S. A. Obayya,et al.  Numerical analysis of ultrafast physical random number generator using dual-channel optical chaos , 2016 .

[62]  Mehdi Parvizi Amineh `International Atomic Energy Agency' (IAEA) , 2001 .