Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study

[1]  M. Kendall,et al.  Rank Correlation Methods , 1949 .

[2]  D. Perani,et al.  Evidence of multiple memory systems in the human brain. A [18F]FDG PET metabolic study. , 1993, Brain : a journal of neurology.

[3]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[4]  Thomas E. Nichols,et al.  Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease , 1996, Neurology.

[5]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[6]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[7]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[8]  E. Tangalos,et al.  CME Practice parameter: , 2022 .

[9]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[10]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[11]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[12]  J. Baron,et al.  Voxel-Based Mapping of Brain Hypometabolism in Permanent Amnesia with PET , 2001, NeuroImage.

[13]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Lurito,et al.  Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. , 2002, Radiology.

[15]  J. Baron,et al.  Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment , 2002, Neuroreport.

[16]  Gaohong Wu,et al.  Alzheimer Disease: evaluation of a functional MR imaging index as a marker. , 2002, Radiology.

[17]  Florence Mézenge,et al.  Brain Glucose Hypometabolism after Perirhinal Lesions in Baboons: Implications for Alzheimer Disease and Aging , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Russell A. Poldrack,et al.  Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation , 2003, NeuroImage.

[19]  J. Binder,et al.  A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging , 2003, Journal of Cognitive Neuroscience.

[20]  Richard J. Caselli,et al.  Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment , 2004, Neuropsychologia.

[21]  Nick C. Fox,et al.  Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease , 2004, NeuroImage.

[22]  Yingli Lu,et al.  Regional homogeneity approach to fMRI data analysis , 2004, NeuroImage.

[23]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[24]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[25]  Brigitte Landeau,et al.  Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study , 2005, NeuroImage.

[26]  Benjamin J. Shannon,et al.  Parietal lobe contributions to episodic memory retrieval , 2005, Trends in Cognitive Sciences.

[27]  M. Lowe,et al.  Activity and Connectivity of Brain Mood Regulating Circuit in Depression: A Functional Magnetic Resonance Study , 2005, Biological Psychiatry.

[28]  G. Frisoni,et al.  A voxel based morphometry study on mild cognitive impairment , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[29]  M. Albert,et al.  Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD , 2005, Neurology.

[30]  H. Möller,et al.  Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. , 2006, Brain : a journal of neurology.

[31]  Yufeng Zang,et al.  Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study , 2006, Neuroreport.

[32]  Tianzi Jiang,et al.  Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI , 2006, NeuroImage.

[33]  M. Filippi,et al.  The contribution of voxel-based morphometry in staging patients with mild cognitive impairment , 2006, Neurology.

[34]  Stefan Arnborg,et al.  Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression , 2006, BMC psychiatry.

[35]  Tianzi Jiang,et al.  Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study , 2006, Neuroreport.

[36]  Justin L. Vincent,et al.  Disruption of Large-Scale Brain Systems in Advanced Aging , 2007, Neuron.

[37]  Eini Niskanen,et al.  Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment , 2007, NeuroImage.

[38]  Tianzi Jiang,et al.  Regional coherence changes in the early stages of Alzheimer’s disease: A combined structural and resting-state functional MRI study , 2007, NeuroImage.

[39]  Y. Zang,et al.  Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI , 2007, Brain and Development.

[40]  V. Calhoun,et al.  Selective changes of resting-state networks in individuals at risk for Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[41]  Lv Chuan-zhen,et al.  Norm of Auditory Verbal Learning Test in the Normal Aged in China Community , 2007 .

[42]  A M Dale,et al.  Prefrontal‐hippocampal‐fusiform activity during encoding predicts intraindividual differences in free recall ability: An event‐related functional‐anatomic MRI study , 2007, Hippocampus.