Potpourri of Conjectures and Open Questions in Nonlinear Analysis and Optimization
暂无分享,去创建一个
[1] Alberto Seeger,et al. Second Derivatives of a Convex Function and of Its Legendre-Fenchel Transformate , 1992, SIAM J. Optim..
[2] J. Hiriart-Urruty. New concepts in nondifferentiable programming , 1979 .
[3] S. Chern,et al. Exterior Differential Systems , 1990 .
[4] Eugenio Calabi,et al. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .
[5] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[6] J. Hiriart-Urruty,et al. ENSEMBLES DE TCHEBYCHEV VS ENSEMBLES CONVEXES : L'ETAT DE LA SITUATION VU VIA L'ANALYSE CONVEXE NON LISSE , 1998 .
[7] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[8] W. Greub. Linear Algebra , 1981 .
[9] M. Delfour,et al. Shape Analysis via Oriented Distance Functions , 1994 .
[10] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[11] J.-B. Hiriart-Urruty,et al. Permanently Going Back and Forth between the ``Quadratic World'' and the ``Convexity World'' in Optimization , 2002 .
[12] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] C. Villani. Topics in Optimal Transportation , 2003 .
[15] Cristian E. Gutiérrez,et al. The Monge―Ampère Equation , 2001 .
[16] Jieyong Zhou,et al. A direct proof and a generalization for a Kantorovich type inequality , 2005 .
[17] Ilya J. Bakelman,et al. Convex Analysis and Nonlinear Geometric Elliptic Equations , 1994 .
[18] Luis A. Caffarelli,et al. A Liouville theorem for solutions of the Monge–Ampère equation with periodic data , 2004 .
[19] Giuseppe Buttazzo,et al. On Newton’s problem of minimal resistance , 1993 .
[20] Bernd Kawohl,et al. A symmetry problem in the calculus of variations , 1996 .
[21] F. Uhlig. A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .
[22] Ya-Xiang Yuan,et al. On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..
[23] B. Kawohl,et al. CHARACTERIZATION OF CHEEGER SETS FOR CONVEX SUBSETS OF THE PLANE , 2006 .
[24] S. Kružkov. GENERALIZED SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE. I. FORMULATION OF THE PROBLEMS; EXISTENCE, UNIQUENESS AND STABILITY THEOREMS; SOME PROPERTIES OF THE SOLUTIONS , 1975 .
[25] Vladimir Tikhomirov,et al. Stories about maxima and minima , 1990 .
[26] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[27] A. Mennucci,et al. Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.
[28] V. S. Balaganskii,et al. The problem of convexity of Chebyshev sets , 1996 .
[29] F. Deutsch. Best approximation in inner product spaces , 2001 .
[30] Ronald L. Graham,et al. Problem #7 , 1974, SIGS.
[31] Édouard Oudet,et al. Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..