A control method for congested traffic in the coupled map car-following model

Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results are compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.

[1]  Ziyou Gao,et al.  A control method for congested traffic induced by bottlenecks in the coupled map car-following model , 2006 .

[2]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  S. Dai,et al.  Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  K Konishi,et al.  Coupled map car-following model and its delayed-feedback control. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  S. Dai,et al.  Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  G. F. Newell Nonlinear Effects in the Dynamics of Car Following , 1961 .