A deterministic sparse FFT algorithm for vectors with small support

In this paper we consider the special case where a signal x∈ℂN${\in }\,\mathbb {C}^{N}$ is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform x̂∈ℂN$\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}$. In case of exact Fourier measurements we require only O${\mathcal O}$(mlog$\log $m) arithmetical operations. For noisy measurements, we propose a stable O${\mathcal O}$(mlog$\log $N) algorithm.

[1]  Markus Püschel,et al.  High-performance sparse fast Fourier transforms , 2014 .

[2]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[3]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[4]  Stefan Kunis,et al.  A sparse Prony FFT , 2013 .

[5]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.

[6]  G. Plonka,et al.  Prony methods for recovery of structured functions , 2014 .

[7]  Piotr Indyk,et al.  Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.

[8]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[9]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[10]  Jörn Schumacher High performance Sparse Fast Fourier Transform , 2013 .

[11]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[12]  Kannan Ramchandran,et al.  Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.

[13]  Adi Akavia,et al.  Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.

[14]  J. J. Green Calculating the Maximum Modulus of a Polynomial Using Steckin's Lemma , 1999 .

[15]  Piotr Indyk,et al.  (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.