A deterministic sparse FFT algorithm for vectors with small support
暂无分享,去创建一个
[1] Markus Püschel,et al. High-performance sparse fast Fourier transforms , 2014 .
[2] Yang Wang,et al. Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..
[3] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[4] Stefan Kunis,et al. A sparse Prony FFT , 2013 .
[5] M. A. Iwen,et al. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.
[6] G. Plonka,et al. Prony methods for recovery of structured functions , 2014 .
[7] Piotr Indyk,et al. Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.
[8] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[9] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[10] Jörn Schumacher. High performance Sparse Fast Fourier Transform , 2013 .
[11] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[12] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[13] Adi Akavia,et al. Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.
[14] J. J. Green. Calculating the Maximum Modulus of a Polynomial Using Steckin's Lemma , 1999 .
[15] Piotr Indyk,et al. (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.