Quantum-Enhanced Metrology in Cavity Magnomechanics

Magnons, as fundamental quasiparticles emerged in elementary spin excitations, hold a big promise for innovating quantum technologies in information coding and processing. Here we discover subtle roles of entanglement in a metrological scheme based on an experimentally feasible cavity magnomechanical system, where the magnons are responsible for sensing a weak magnetic field whereas the cavity field carries out a precision measurement of the weak field. By establishing exact relations between the Fisher information and entanglement, we show that for the weak coupling case the measurement precision can reach the Heisenberg limit, whereas quantum criticality enables us to enhance measurement precision for the strong coupling case. In particular, we also find that the entanglement between magnons and photons is of crucial importance during the dynamical encoding process, but the presence of such an entanglement in the measurement process dramatically reduces the final measurement precision.

[1]  Xiao-Hui Wang,et al.  Entanglement, Coherence, and Extractable Work in Quantum Batteries. , 2022, Physical review letters.

[2]  C. Zhang,et al.  Unveiling a Pump-Induced Magnon Mode via Its Strong Interaction with Walker Modes. , 2022, Physical review letters.

[3]  C. Tsallis Entropy , 2022, Thermodynamic Weirdness.

[4]  Xiao-Hui Wang,et al.  Entanglement and work extraction in the central-spin quantum battery , 2021, Physical Review B.

[5]  Haidong Yuan,et al.  Experimental critical quantum metrology with the Heisenberg scaling , 2021, npj Quantum Information.

[6]  R. Duine,et al.  Quantum magnonics: When magnon spintronics meets quantum information science , 2021, 2111.14241.

[7]  M. Fadel,et al.  Author Correction: Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox , 2021, Nature Communications.

[8]  M. Barbieri,et al.  Witnessing quantum steering by means of the Fisher information , 2021, 2107.14730.

[9]  A. Ustinov,et al.  Approaching Deep-Strong On-Chip Photon-To-Magnon Coupling , 2021, Physical Review Applied.

[10]  Hong Tang,et al.  Cavity magnonics , 2021, Physics Reports.

[11]  Vahid Azimi Mousolou,et al.  Magnon-magnon entanglement and its quantification via a microwave cavity , 2021, Physical Review B.

[12]  M. Harder,et al.  Coherent and dissipative cavity magnonics , 2021, Journal of Applied Physics.

[13]  A. Bayat,et al.  Global Sensing and Its Impact for Quantum Many-Body Probes with Criticality. , 2021, Physical review letters.

[14]  A. Smerzi,et al.  Metrological Detection of Multipartite Entanglement from Young Diagrams. , 2020, Physical review letters.

[15]  J. Chwedeńczuk,et al.  Many-Body Nonlocality as a Resource for Quantum-Enhanced Metrology. , 2020, Physical review letters.

[16]  Xiaoguang Wang,et al.  Parametrized protocol achieving the Heisenberg limit in the optical domain via dispersive atom–light interactions , 2020, 2010.14842.

[17]  M. Weides,et al.  Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers , 2020, Science Advances.

[18]  Jianming Cai,et al.  Dynamic Framework for Criticality-Enhanced Quantum Sensing. , 2020, Physical review letters.

[19]  W. Kwok,et al.  Hybrid magnonics: Physics, circuits, and applications for coherent information processing , 2020, Journal of Applied Physics.

[20]  Y. Blanter,et al.  Resources of nonlinear cavity magnonics for quantum information , 2019, Physical Review B.

[21]  Yasunobu Nakamura,et al.  Entanglement-based single-shot detection of a single magnon with a superconducting qubit , 2019, Science.

[22]  M. Paris,et al.  Critical Quantum Metrology with a Finite-Component Quantum Phase Transition. , 2019, Physical review letters.

[23]  Heng Shen,et al.  Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields. , 2019, Physical review letters.

[24]  Jing Liu,et al.  Quantum Fisher information matrix and multiparameter estimation , 2019, Journal of Physics A: Mathematical and Theoretical.

[25]  M. Yung,et al.  Steady Bell State Generation via Magnon-Photon Coupling. , 2019, Physical review letters.

[26]  G. Agarwal,et al.  Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium , 2019, Physical Review Research.

[27]  G. A. Young,et al.  Mathematical Statistics: An Introduction to Likelihood Based InferenceRichard J.RossiJohn Wiley & Sons, 2018, xv + 422 pages, £85.99, ebook ISBN: 978‐1‐118‐77104‐4, LCCN 2018010628 (ebook) , 2019, International Statistical Review.

[28]  Yasunobu Nakamura,et al.  Dissipation-Based Quantum Sensing of Magnons with a Superconducting Qubit. , 2019, Physical review letters.

[29]  M. Yung,et al.  Enhancement of magnon-magnon entanglement inside a cavity , 2019, Physical Review B.

[30]  X. Wen Choreographed entanglement dances: Topological states of quantum matter , 2019, Science.

[31]  P. Cappellaro,et al.  Nonclassical correlations for quantum metrology in thermal equilibrium , 2018, Physical Review A.

[32]  N. Gisin,et al.  Does large quantum Fisher information imply Bell correlations? , 2018, Physical Review A.

[33]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[34]  Vittorio Giovannetti,et al.  Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. , 2018, Physical review letters.

[35]  Shi-Yao Zhu,et al.  Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. , 2018, Physical review letters.

[36]  B. Doyon,et al.  Entanglement Content of Quasiparticle Excitations. , 2018, Physical review letters.

[37]  M. Klaui,et al.  Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature , 2018, 1801.01439.

[38]  T. Roscilde,et al.  Quantum Critical Metrology. , 2017, Physical review letters.

[39]  E. Couderc,et al.  The quasiparticle zoo , 2016, Nature Physics.

[40]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[41]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[42]  M. Tobar,et al.  Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere , 2015, 1512.07773.

[43]  H. Tang,et al.  Cavity magnomechanics , 2015, Science Advances.

[44]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.

[45]  Michael E. Tobar,et al.  Superstrong coupling of a microwave cavity to yttrium iron garnet magnons , 2015, 1508.04967.

[46]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[47]  D. Girolami Interpreting quantum discord in quantum metrology , 2015, 1502.04549.

[48]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[49]  H. Tang,et al.  Strongly coupled magnons and cavity microwave photons. , 2014, Physical review letters.

[50]  Yasunobu Nakamura,et al.  Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. , 2014, Physical review letters.

[51]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[52]  Davide Girolami,et al.  Quantum Discord Determines the Interferometric Power of Quantum States , 2013, 1309.1472.

[53]  Nan Li,et al.  Entanglement detection via quantum Fisher information , 2013 .

[54]  N. Treps,et al.  Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.

[55]  F. Hocke,et al.  High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. , 2012, Physical review letters.

[56]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[57]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[58]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[59]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[60]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[61]  M. Flatté,et al.  Strong field interactions between a nanomagnet and a photonic cavity. , 2010, Physical review letters.

[62]  C. Sire,et al.  Quantum critical scaling of fidelity susceptibility , 2009, 0912.2689.

[63]  D. Bruß,et al.  Multipartite entanglement detection via structure factors. , 2009, Physical review letters.

[64]  S. Gu Fidelity approach to quantum phase transitions , 2008, 0811.3127.

[65]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[66]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[67]  J. Cardy,et al.  Entanglement and correlation functions following a local quench: a conformal field theory approach , 2007, 0708.3750.

[68]  Paolo Zanardi,et al.  Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.

[69]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[70]  Hai-Qing Lin,et al.  Fidelity susceptibility, scaling, and universality in quantum critical phenomena , 2007, 0706.2495.

[71]  Paolo Zanardi,et al.  Quantum critical scaling of the geometric tensors. , 2007, Physical review letters.

[72]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[73]  Karsten Danzmann,et al.  Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.

[74]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[75]  A. Monras Optimal phase measurements with pure Gaussian states , 2005, quant-ph/0509018.

[76]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[77]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[78]  V. Scarani,et al.  Proposal for energy-time entanglement of quasiparticles in a solid-state device. , 2003, Physical review letters.

[79]  C. Emary,et al.  Chaos and the quantum phase transition in the Dicke model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  D. McClelland,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[81]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[82]  Yu Shi,et al.  Quantum Entanglement in Condensed Matter Systems , 2002 .

[83]  V. Dodonov REVIEW ARTICLE: `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years , 2002 .

[84]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[85]  G. Adam Density Matrix Elements and Moments for Generalized Gaussian State Fields , 1995 .

[86]  D. Walls Squeezed states of light , 1983, Nature.

[87]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[88]  J. Hollenhorst QUANTUM LIMITS ON RESONANT MASS GRAVITATIONAL RADIATION DETECTORS , 1979 .

[89]  G. Agarwal Entropy, the Wigner Distribution Function, and the Approach to Equilibrium of a System of Coupled Harmonic Oscillators , 1971 .

[90]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[91]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[92]  C. Lacor,et al.  Chaos , 1876, Molecular Vibrations.

[93]  M. Plenio,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[94]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[95]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[96]  H. Cramér Mathematical methods of statistics , 1946 .