A Research Review on Hyperspectral Data Processing and Analysis Algorithms

Abstract Recent advances in the sensors technology for imaging spectroscopy coupled with high computing power, raise the demand to develop the algorithms for processing and analysis of hyperspectral data for various applications. Well known techniques and algorithms are available for processing multispectral data in the literature. Researchers tried to use similar approaches for hyperspectral data analysis and succeeded up to some extent. Several techniques for atmospheric correction, dimensionality reduction, endmember extraction and classification has been developed and reported accordingly. To process and evaluate the hyperspectral data for domain applications require generalized framework. This article critically reviews most of the existing hyperspectral data processing and analysis approaches and gives generalized framework. Which offers considerate view for future potential and focuses emerging challenges in the development of robust algorithms for hyperspectral data processing and analysis.

[1]  Nektarios Chrysoulakis,et al.  Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery , 2016, International Conference on Remote Sensing and Geoinformation of Environment.

[2]  Edward J. Milton,et al.  Review Article Principles of field spectroscopy , 1987 .

[3]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Fuan Tsai,et al.  Derivative Analysis of Hyperspectral Data , 1998 .

[5]  Chein-I Chang,et al.  Multispectral and hyperspectral image analysis with convex cones , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Antonio Plaza,et al.  An experimental evaluation of endmember generation algorithms , 2005, SPIE Optics East.

[7]  B. T. San,et al.  EVALUATION OF DIFFERENT ATMOSPHERIC CORRECTION ALGORITHMS FOR EO-1 HYPERION IMAGERY , 2010 .

[8]  Michael E. Schaepman,et al.  Fast and simple model for atmospheric radiative transfer , 2010 .

[9]  Derek Rogge,et al.  Integration of spatial–spectral information for the improved extraction of endmembers , 2007 .

[10]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[11]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Rekha Rajagopal,et al.  Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification , 2017, Biomed. Signal Process. Control..

[13]  Valiuddin,et al.  Hyperspectral Hyperion Imagery Analysis and its Application Using Spectral Analysis , 2015 .

[14]  Nilanjan Dey,et al.  A survey of image classification methods and techniques , 2014, 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT).

[15]  Layne T. Watson,et al.  AN ADAPTIVE NOISE REDUCTION TECHNIQUE FOR IMPROVING THE UTILITY OF HYPERSPECTRAL DATA , 2008 .

[16]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[17]  Alan R. Gillespie,et al.  Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach , 2004 .

[18]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[19]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[20]  Peg Shippert Why Use Hyperspectral Imagery , 2004 .

[21]  B. Krishna Mohan,et al.  Hyperspectral Image Processing and Analysis , 2015 .

[22]  Markus Ringnér,et al.  What is principal component analysis? , 2008, Nature Biotechnology.

[23]  Sahar A. ElRahman,et al.  Supervised Classification Approaches to Analyze Hyperspectral Dataset , 2015 .

[24]  Antonio J. Plaza,et al.  Parallel and Distributed Dimensionality Reduction of Hyperspectral Data on Cloud Computing Architectures , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Jing Wang,et al.  Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Antonio J. Plaza,et al.  On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms , 2011, Journal of Mathematical Imaging and Vision.

[28]  J. R. Sveinsson,et al.  Mapping of hyperspectral AVIRIS data using machine-learning algorithms , 2009 .

[29]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[30]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  D. Thompson,et al.  Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign , 2015 .

[32]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[33]  Zheng Qu,et al.  Atmospheric correction of Hyperion data and techniques for dynamic scene correction , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[34]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[35]  Lawrence S. Bernstein,et al.  Quick atmospheric correction code: algorithm description and recent upgrades , 2012 .

[36]  Chein-I Chang,et al.  Comparative Study and Analysis Among ATGP, VCA, and SGA for Finding Endmembers in Hyperspectral Imagery , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Peng Gong,et al.  Modified N-FINDR endmember extraction algorithm for remote-sensing imagery , 2015 .

[38]  Jun Li,et al.  Advanced Spectral Classifiers for Hyperspectral Images: A review , 2017, IEEE Geoscience and Remote Sensing Magazine.

[39]  A. Mazer,et al.  Image processing software for imaging spectrometry data analysis , 1988 .

[40]  Anna Denisova,et al.  Atmospheric correction of hyperspectral images using qualitative information about registered scene , 2017, International Conference on Machine Vision.

[41]  Eyal Ben-Dor,et al.  Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data , 2004 .

[42]  Zhenfeng Shao,et al.  High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder , 2015 .

[43]  Johannes R. Sveinsson,et al.  Random forest classifiers for hyperspectral data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[44]  Ujjwal Maulik,et al.  Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques , 2017, IEEE Geoscience and Remote Sensing Magazine.

[45]  J. Shan,et al.  Principal Component Analysis for Hyperspectral Image Classification , 2002 .

[46]  Antonio Plaza,et al.  Endmember extraction algorithms from hyperspectral images , 2006 .

[47]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[48]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[49]  Chuleerat Jaruskulchai,et al.  Band Selection for Dimension Reduction in Hyper Spectral Image Using Integrated InformationGain and Principal Components Analysis Technique , 2012 .

[50]  Lawrence S. Bernstein,et al.  The Quick Atmospheric Correction (QUAC) Algorithm for Hyperspectral Image Processing: Extending QUAC to a Coastal Scene , 2015, 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[51]  Zheng Qu,et al.  The High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) model , 2003, IEEE Trans. Geosci. Remote. Sens..

[52]  Saeid Homayouni,et al.  Semi-supervised classification of hyperspectral image using random forest algorithm , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[53]  Daniel Mozos,et al.  FPGA implementation of endmember extraction algorithms from hyperspectral imagery: pixel purity index versus N-FINDR , 2011, Remote Sensing.

[54]  Aapo Hyvärinen,et al.  Independent component analysis: recent advances , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  O. K. Ersoy,et al.  Comparison of single and ensemble classifiers in terms of accuracy and execution time , 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications.

[57]  Lawrence S. Bernstein,et al.  Quick atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: Algorithm details , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[58]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Antonio J. Plaza,et al.  A fast iterative algorithm for implementation of pixel purity index , 2006, IEEE Geoscience and Remote Sensing Letters.

[60]  A. K. Bhattacharya,et al.  Hyperspectral Radiometry to Quantify the Grades of Iron Ores of Noamundi and Joda Mines, Eastern India , 2011 .

[61]  M. M. Hafizur Rahman,et al.  Bangla Handwritten Character Recognition using Convolutional Neural Network , 2015 .

[62]  Kandarpa Kumar Sarma,et al.  Hyperspectral Remote Sensing Classifications: A Perspective Survey , 2016, Trans. GIS.

[63]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[64]  M. Wulder,et al.  Contextual classification of Landsat TM images to forest inventory cover types , 2004 .

[65]  Bo Du,et al.  Dimensionality Reduction and Classification of Hyperspectral Images Using Ensemble Discriminative Local Metric Learning , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Jay Gao Digital Analysis of Remotely Sensed Imagery , 2009 .

[67]  Philippe De Maeyer,et al.  ACCURACY ASSESSMENT OF A LIDAR DIGITAL TERRAIN MODEL BY USING RTK GPS AND TOTAL STATION , 2011 .

[68]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[69]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[70]  Alexander F. H. Goetz,et al.  Progress in hyperspectral imaging of vegetation , 2001, Optics East.

[71]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[72]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[73]  F. D. van der Meer,et al.  Spectral mapping methods : many problems, some solutions , 2003 .

[74]  David R Thompson,et al.  Atmospheric correction with the Bayesian empirical line. , 2016, Optics express.

[75]  Chein-I Chang,et al.  A New Growing Method for Simplex-Based Endmember Extraction Algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Hassan Ghassemian,et al.  A Fast Spatial–Spectral Preprocessing Module for Hyperspectral Endmember Extraction , 2016, IEEE Geoscience and Remote Sensing Letters.

[77]  Jon Atli Benediktsson,et al.  A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Sindy Sterckx,et al.  Atmospheric correction of APEX hyperspectral data , 2016 .