The Coarse Mesh Condensation Multiscale Method for parallel computation of heterogeneous linear structures without scale separation

A Coarse Mesh Condensation Multiscale Method (CMCM) is proposed to solve large heterogeneous linear structures without scale separation assumption. The technique aims to approximate the full field solution in heterogeneous structures by performing parallel calculations on subdomains. In the linear case, treated in this paper, direct linear relationships can be established between a reduced number of parameters describing Dirichlet boundary conditions on the subdomains boundaries and the degrees of freedom of a coarse mesh. The problem associated with the coarse mesh can be solved in one iteration and allows reconstructing the fine mesh solution in all subdomains. The accuracy of the method is analyzed through benchmarks involving subdomains crossed by the interfaces. Appplications to large industrial finite element applications are presented, including one involving around 1.3 billion degrees of freedom.

[1]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[2]  Mgd Marc Geers,et al.  A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework , 2012, International Journal of Fracture.

[3]  M. Guerich,et al.  A multi‐scale modeling method for heterogeneous structures without scale separation using a filter‐based homogenization scheme , 2016 .

[4]  Pierre Gosselet,et al.  Adaptive multipreconditioned FETI: Scalability results and robustness assessment , 2017 .

[5]  J. Dirrenberger,et al.  A complete description of bi-dimensional anisotropic strain-gradient elasticity , 2015 .

[6]  Yoshihiro Tomita,et al.  A micromechanical approach of nonlocal modeling for media with periodic microstructures , 2008 .

[7]  Peter Wriggers,et al.  A method of substructuring large-scale computational micromechanical problems , 2001 .

[8]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[9]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[10]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[11]  K. St A review of algebraic multigrid , 2001 .

[12]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[13]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[14]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[15]  Louise P. Brown,et al.  Modelling and Simulating Textile Structures Using TexGen , 2011 .

[16]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[17]  D. Rixen,et al.  A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems , 1999 .

[18]  Vincent Monchiet,et al.  A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media , 2012 .

[19]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[20]  J. Ruge,et al.  Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .

[21]  Frédéric Nataf,et al.  Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method , 2013 .

[22]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[23]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[24]  Iwona M Jasiuk,et al.  A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .

[25]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[26]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[27]  P. Breitkopf,et al.  Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework , 2014 .

[28]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[29]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[30]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[31]  Peter Wriggers,et al.  A domain decomposition method for bodies with heterogeneous microstructure basedon material regularization , 1999 .

[32]  D. Rixen,et al.  Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions , 2015 .

[33]  Nicole Spillane,et al.  An Adaptive MultiPreconditioned Conjugate Gradient Algorithm , 2016, SIAM J. Sci. Comput..

[34]  Antonio Huerta,et al.  Proper generalized decomposition solutions within a domain decomposition strategy , 2018 .

[35]  Tong Hui,et al.  A nonlocal homogenization model for wave dispersion in dissipative composite materials , 2013 .

[36]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[37]  Jean-Baptiste Colliat,et al.  A multi-scale approach to model localized failure with softening , 2012 .

[38]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[39]  Pierre Gosselet,et al.  On the initial estimate of interface forces in FETI methods , 2003, 1208.6380.

[40]  D. Bartuschat Algebraic Multigrid , 2007 .

[41]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[42]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[43]  Vincent Monchiet,et al.  Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior , 2020, International Journal of Solids and Structures.