Exploiting Sparsity in Direct Collocation Pseudospectral Methods for Solving Optimal Control Problems
暂无分享,去创建一个
[1] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[2] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[3] Michael A. Patterson,et al. Direct Trajectory Optimization and Costate Estimation of General Optimal Control Problems Using a Radau Pseudospectral Method , 2009 .
[4] Anil V. Rao,et al. An Initial Examination of Using Pseudospectral Methods for Timescale and Differential Geometric Analysis of Nonlinear Optimal Control Problems , 2008 .
[5] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[6] William W. Hager,et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..
[7] Arthur E. Bryson,et al. Applied Optimal Control , 1969 .
[8] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[9] P. Tsiotras,et al. Mesh Refinement Using Density Function for Solving Optimal Control Problems , 2009 .
[10] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[11] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[12] W. Hager,et al. An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .
[13] John T. Betts,et al. Exploiting Sparsity in the Direct Transcription Method for Optimal Control , 1999, Comput. Optim. Appl..
[14] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[15] John T. Betts,et al. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .
[16] Anil V. Rao,et al. Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.
[17] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[18] William W. Hager,et al. Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..
[19] Claudio Canuto,et al. To the memory of Giovanni Sacchi Landriani , 1990 .
[20] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[21] William W. Hager,et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..
[22] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[23] Jorge Nocedal,et al. Knitro: An Integrated Package for Nonlinear Optimization , 2006 .
[24] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[25] David Benson,et al. A Gauss pseudospectral transcription for optimal control , 2005 .
[26] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[27] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[28] Victor M. Zavala,et al. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..
[29] P. Gill,et al. Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .
[30] Iain S. Duff,et al. MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.
[31] Gamal N. Elnagar,et al. Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .
[32] P. Tsiotras,et al. Trajectory Optimization Using Multiresolution Techniques , 2008 .
[33] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[34] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[35] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[36] Anil V. Rao,et al. Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .
[37] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[38] Lorenz T. Biegler,et al. Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..
[39] C. Canuto. Spectral methods in fluid dynamics , 1991 .