Exploiting Sparsity in Direct Collocation Pseudospectral Methods for Solving Optimal Control Problems

Inadirectcollocationpseudospectralmethod,acontinuous-timeoptimalcontrolproblemistranscribedtoa finitedimensional nonlinear programming problem. Solving this nonlinear programming problem as efficiently as possible requires that sparsity at both the first- and second-derivative levels be exploited. In this paper, a computationally efficient method is developed for computing the first and second derivatives of the nonlinear programming problem functions arising from a pseudospectral discretization of a continuous-time optimal control problem. Specifically,in thispaper, expressions arederivedfor theobjective function gradient, constraint Jacobian, and Lagrangian Hessian arising from the previously developed Radau pseudospectral method. It is shown that the computation of these derivative functions can be reduced to computing the first and second derivatives of the functions in the continuous-time optimal control problem. As a result, the method derived in this paper reduces significantly the amount of computation required to obtain the first and second derivatives required by a nonlinear programming problem solver. The approach derived in this paper is demonstrated on an example where it is found that significant computational benefits are obtained when compared against direct differentiation of the nonlinear programming problem functions. The approach developed in this paper improves the computational efficiency of solving nonlinear programming problems arising from pseudospectral discretizations of continuous-time optimal control problems.

[1]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[2]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[3]  Michael A. Patterson,et al.  Direct Trajectory Optimization and Costate Estimation of General Optimal Control Problems Using a Radau Pseudospectral Method , 2009 .

[4]  Anil V. Rao,et al.  An Initial Examination of Using Pseudospectral Methods for Timescale and Differential Geometric Analysis of Nonlinear Optimal Control Problems , 2008 .

[5]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[6]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[7]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[8]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[9]  P. Tsiotras,et al.  Mesh Refinement Using Density Function for Solving Optimal Control Problems , 2009 .

[10]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[11]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[12]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[13]  John T. Betts,et al.  Exploiting Sparsity in the Direct Transcription Method for Optimal Control , 1999, Comput. Optim. Appl..

[14]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[15]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[16]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[17]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[18]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[19]  Claudio Canuto,et al.  To the memory of Giovanni Sacchi Landriani , 1990 .

[20]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[21]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[22]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[23]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[24]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[25]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[26]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[27]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[28]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[29]  P. Gill,et al.  Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .

[30]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[31]  Gamal N. Elnagar,et al.  Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .

[32]  P. Tsiotras,et al.  Trajectory Optimization Using Multiresolution Techniques , 2008 .

[33]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[34]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[35]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[36]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[37]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[38]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[39]  C. Canuto Spectral methods in fluid dynamics , 1991 .