Non‐linear coherent structures in multi‐species dusty plasma

In a fluid description, theoretical investigation has been carried out to explore how the presence of two‐temperature electron fluids (hot and cold) influences the characters of dust acoustic solitary waves, double layers, bipolar structures, etc. in a multi‐component dusty plasma, composed of isothermal electrons and ions, along with the negatively charged, cold dusts. A reductive perturbation method is used to derive the well‐known Korteweg‐de Vries (KdV) equation, which describes the basic nature of the dust acoustic solitary waves. Two values of critical ion density exist, which distinguish the regions of compressive and rarefactive solitary waves in parametric space. The critical points directly depend on the densities and temperatures of the electron fluids. With increasing temperature of hot electron fluid, one of the two critical ion densities decreases, and the other one increases. Ultimately, they merge with each other when the temperature of hot electrons reaches a particular value. The amplitude of the dust acoustic soliton gets modified due to the presence of two‐temperature electron fluids. The study is extended further by deriving modified KdV and Gardner equations at the vicinity of critical points. The Gardner equation reveals the existence of double layer and bipolar structures. In these processes, the effects higher‐order nonlinearities are incorporated methodically, by implementing appropriate stretching of the coordinates. Sagdeev's pseudopotential analysis shows that large amplitude rarefactive solitary waves only exist when the corresponding Mach number (M) lies within 1 < M < Mc. The upper bound, Mc increases with the hot electron temperature and cold electron density. The results presented in this investigation are believed to be applicable in the laboratory and astrophysical plasmas.

[1]  J. Pouwelse,et al.  ConTrib: Universal and Decentralized Accounting in Shared-Resource Systems , 2020, DICG@Middleware.

[2]  G. Samiran Nonlinear Ion Acoustic Wave and Group Dynamics Near Critical Density in a Plasma with Negative Ion , 2019, Journal of the Physical Society of Japan.

[3]  H. Chatei,et al.  Effects of non‐extensive electrons on the sheath of dusty plasmas with variable dust charge , 2019, Contributions to Plasma Physics.

[4]  A. Seadawy,et al.  More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics , 2018, The European Physical Journal Plus.

[5]  Abdullah Al Mamun,et al.  Dust surface potential in a generalized (r, q)‐distributed multi‐ion dusty plasma , 2018, Contributions to Plasma Physics.

[6]  Aly R. Seadawy,et al.  Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques , 2018, Results in Physics.

[7]  Aly R. Seadawy,et al.  Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods , 2017 .

[8]  D. Lu,et al.  Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability , 2017 .

[9]  N. Chakrabarti,et al.  Experimental observation of electron-acoustic wave propagation in laboratory plasma , 2017, 1705.09806.

[10]  Aly R. Seadawy,et al.  Ion acoustic solitary wave solutions of two‐dimensional nonlinear Kadomtsev–Petviashvili–Burgers equation in quantum plasma , 2017 .

[11]  Aly R. Seadawy,et al.  Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications , 2017 .

[12]  I. M. Tkachenko,et al.  Electric Charge of Dust Particles in a Plasma , 2016 .

[13]  B. Sahu,et al.  Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons , 2015 .

[14]  M. Murillo,et al.  Unified description of linear screening in dense plasmas. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  F. Taccogna,et al.  Dust in Plasma II. Effects of Secondary Electrons: Ionization and Surface Emission , 2014 .

[16]  Aly R. Seadawy,et al.  Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation , 2014, Appl. Math. Comput..

[17]  Z. Kudyshev,et al.  Influence of Polarization Phenomena on Radial Distribution Function of Dust Particles , 2013 .

[18]  Aly R. Seadawy,et al.  Traveling wave solutions for some coupled nonlinear evolution equations , 2013, Math. Comput. Model..

[19]  A. Piel,et al.  Recent Progress in Complex Plasmas , 2012 .

[20]  H. Fehske,et al.  Wall Charge and Potential from a Microscopic Point of View , 2012, 1204.6469.

[21]  Mouloud Tribeche,et al.  Nonextensive dust acoustic solitary and shock waves in nonplanar geometry , 2012 .

[22]  Aly R. Seadawy,et al.  Exact solutions of a two-dimensional nonlinear Schrödinger equation , 2012, Appl. Math. Lett..

[23]  N. Singh Current-free double layers: A review , 2011 .

[24]  Samiran Ghosh,et al.  Low-frequency wave modulations in an electronegative dusty plasma in the presence of charge variations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  O. Petrov,et al.  Influence of Dust Particles Concentration on Plasma Parameters in DC Discharge , 2009 .

[26]  H. Fehske,et al.  Towards a Microscopic Theory of Particle Charging , 2009, 0904.3187.

[27]  S. Khrapak,et al.  Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force , 2009 .

[28]  Samiran Ghosh,et al.  Ion acoustic solitons and double layers in electron–positron–ion plasmas with dust particulates , 2008 .

[29]  C. Charles,et al.  A review of recent laboratory double layer experiments , 2007 .

[30]  G. Morfill,et al.  Van der Waal's approach in the theory of phase transitions in complex plasmas , 2003 .

[31]  R. Grimshaw,et al.  Generation of large-amplitude solitons in the extended Korteweg-de Vries equation. , 2002, Chaos.

[32]  Samiran Ghosh,et al.  Effect of nonadiabatic dust charge variations on nonlinear dust acoustic waves with nonisothermal ions , 2002 .

[33]  Samiran Ghosh,et al.  Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Y. Nakamura,et al.  Observation of ion-acoustic solitary waves in a dusty plasma , 2001 .

[35]  H. Rahman,et al.  Measurement of grain charge in dusty plasma Coulomb crystals , 2001 .

[36]  G. Lakhina,et al.  Generation of electron-acoustic waves in the magnetosphere , 2001 .

[37]  D. Winske Waves in Dusty Space Plasmas , 2000 .

[38]  K. He,et al.  Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and two-temperature ions , 1999 .

[39]  Y. Nakamura,et al.  Observation of Ion-Acoustic Shocks in a Dusty Plasma , 1999 .

[40]  A. Koshelkin Effect of scattering media on decays of high-energy particles , 1999 .

[41]  D. Sheehan,et al.  Positively charged dust crystals induced by radiative heating , 1999 .

[42]  V. Fortov,et al.  Dusty plasma induced by solar radiation under microgravitational conditions: An experiment on board the Mir orbiting space station , 1998 .

[43]  A. Mamun Compressive and Rarefactive Dust-acoustic Solitary Structures in a Magnetized Two-ion-temperature Dusty Plasma , 1998 .

[44]  S. G. Tagare Dust-acoustic solitary waves and double layers in dusty plasma consisting of cold dust particles and two-temperature isothermal ions , 1997 .

[45]  Y. Nejoh The dust charging effect on electrostatic ion waves in a dusty plasma with trapped electrons , 1997 .

[46]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[47]  F. Verheest Waves and instabilities in dusty space plasmas , 1996 .

[48]  R. Merlino,et al.  Laboratory observation of the dust-acoustic wave mode , 1995 .

[49]  R. Merlino,et al.  Charging of dust grains in a plasma. , 1994, Physical review letters.

[50]  D. A. Mendis,et al.  COSMIC DUSTY PLASMA , 1994 .

[51]  A. Evans The dusty universe , 1994 .

[52]  P. Shukla,et al.  Large amplitude ion-acoustic solitons in a dusty plasma , 1992 .

[53]  U. D. Angelis,et al.  The physics of dusty plasmas , 1992 .

[54]  N. D’angelo Low-frequency electrostatic waves in dusty plasmas , 1990 .

[55]  R. Merlino,et al.  Double layers in a plasma with negative ions , 1990, 1990 Plasma Science IEEE Conference Record - Abstracts.

[56]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[57]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[58]  F. Verheest Ion-acoustic solitons in multi-component plasmas including negative ions at critical densities , 1988, Journal of Plasma Physics.

[59]  M. Horányi,et al.  The effects of electrostatic charging on the dust distribution at Halley's Comet , 1986 .

[60]  H. Ikezi Coulomb solid of small particles in plasmas , 1986 .

[61]  Shinsuke Watanabe Ion Acoustic Soliton in Plasma with Negative Ion , 1984 .

[62]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .