Solution Concept for a Non-Cooperative Game with Fuzzy parameters

In this paper, we study a non cooperative game with payoff functions involving fuzzy parameters. We introduce a concept of solution for this game that we call α-N-S- equilibrium. Our definition is derived from the concept of N-S equilibrium introduced by Zhukovskii for a non cooperative game with payoffs involving unknown parameters in the case of complete ignorance of their behavior. The α-N-S- equilibrium takes into account both the aspect of conflict and the aspect of decision making under uncertainty related to the presence of fuzzy parameters. For the aspect of conflict we adopted the Nash equilibrium, for the aspect of uncertainty we adopted the maximin approach through weak Pareto optimality. Furthermore, we give sufficient conditions for its existence.

[1]  José L. Verdegay,et al.  Fuzzy Sets in Decision Analysis, Operations Research and Statistics , 2001 .

[2]  Ichiro Nishizaki,et al.  Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals , 2000, Fuzzy Sets Syst..

[3]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[4]  Michael D. Weiss Book reviewFuzzy economics and spatial analysis: Claude PONSARD and Bernard FUSTIER (eds.) No. 32 Collection de l'Institut de Mathématiques Economiques, Institut de Mathématiques Economiques et Librairie de l'Université, Dijon, 1986, iv + 202 pages , 1988 .

[5]  Dan Butnariu,et al.  Fuzzy games: A description of the concept , 1978 .

[6]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[7]  Ichiro Nishizaki,et al.  Equilibrium Solutions in Bimatrix Games with Fuzzy Payoffs , 1997 .

[8]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[9]  Masatoshi Sakawa,et al.  Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters , 1986 .

[10]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[11]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[12]  Masatoshi Sakawa,et al.  An interactive fuzzy satisficing method for multiobjective nonlinear programming problems with fuzzy parameters , 1987 .

[13]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[14]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[15]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[16]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[17]  R. K. Bose,et al.  Fuzzy mappings and fixed point theorems , 1987 .