The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

We present a radio light curve of supernova (SN) 2014C taken with the Arcminute Microkelvin Imager (AMI) Large Array at 15.7 GHz. Optical observations presented by Milisavljevic et al. demonstrated that SN 2014C metamorphosed from a stripped-envelope Type Ib SN into a strongly interacting Type IIn SN within 1 yr. The AMI light curve clearly shows two distinct radio peaks, the second being a factor of 4 times more luminous than the first peak. This double bump morphology indicates two distinct phases of mass-loss from the progenitor star with the transition between density regimes occurring at 100–200 d. This reinforces the interpretation that SN 2014C exploded in a low-density region before encountering a dense hydrogen-rich shell of circumstellar material that was likely ejected by the progenitor prior to the explosion. The AMI flux measurements of the first light-curve bump are the only reported observations taken within ∼50 to ∼125 d post-explosion, before the blast-wave encountered the hydrogen shell. Simplistic synchrotron self-absorption and free–free absorption modelling suggest that some physical properties of SN 2014C are consistent with the properties of other Type Ibc and IIn SNe. However, our single frequency data does not allow us to distinguish between these two models, which implies that they are likely too simplistic to describe the complex environment surrounding this event. Lastly, we present the precise radio location of SN 2014C obtained with the electronic Multi-Element Remotely Linked Interferometer Network, which will be useful for future very long baseline interferometry observations of the SN.

[1]  M. Richmond,et al.  SN 1997bs in M66: Another Extragalactic η Carinae Analog? , 2000, astro-ph/0009027.

[2]  F. Feroz,et al.  Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-yr data: I - Spectral properties , 2009, 0907.3707.

[3]  N. Panagia,et al.  Radio emission from supernovae. II, SN 1986J : a different kind of type II , 1990 .

[4]  N. Panagia,et al.  SN 1993J: The early radio emission and evidence for a changing presupernova mass-loss rate , 1994 .

[5]  R. Chevalier,et al.  Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope , 2005, astro-ph/0510362.

[6]  Marcos J. Montes,et al.  Radio emission from supernovae and gamma-ray bursters , 2002 .

[7]  K. Grainge,et al.  Automated rapid follow-up of Swift gamma-ray burst alerts at 15 GHz with the AMI Large Array , 2012, 1211.3115.

[8]  M. Walker Interstellar scintillation of compact extragalactic radio sources , 1998 .

[9]  Christopher L. Williams,et al.  Long-Term Radio Monitoring of SN 1993J , 2007, 0709.1136.

[10]  R. Chevalier The radio and X-ray emission from type II supernovae. , 1982 .

[11]  R. Chevalier,et al.  Radio and X-Ray Emission as Probes of Type IIP Supernovae and Red Supergiant Mass Loss , 2005, astro-ph/0509468.

[12]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[13]  J. Prieto,et al.  SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined Type Ic supernovae , 2012, 1208.3455.

[14]  Christopher L. Williams,et al.  RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA , 2011, 1108.2692.

[15]  N. Smith,et al.  SN2010jp (PTF10aaxi): A Jet-Driven Type II Supernova , 2011, 1108.2868.

[16]  Nathan Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .

[17]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[18]  R. Kirshner,et al.  LATE-TIME OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2012, 1203.0006.

[19]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[20]  S. Owocki,et al.  On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.

[21]  Sung-Chul Yoon Evolutionary Models for Type Ib/c Supernova Progenitors , 2015, Publications of the Astronomical Society of Australia.

[22]  The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope , 2004, astro-ph/0405369.

[23]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[24]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[25]  Megan Argo,et al.  The e-MERLIN Data Reduction Pipeline , 2015, 1502.04936.

[26]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[27]  J. Granot,et al.  Radio limits on off-axis GRB afterglows and VLBI observations of SN 2003gk , 2013, 1310.7171.

[28]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[29]  Anna M. M. Scaife,et al.  10C survey of radio sources at 15.7 GHz – I. Observing, mapping and source extraction★ , 2010, 1012.3711.

[30]  R. Chevalier,et al.  Supernova Interaction with a Circumstellar Medium , 2001, astro-ph/0110060.

[31]  J. Prieto,et al.  SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.

[32]  Bryan J. Butler,et al.  AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz , 2012, 1211.1300.

[33]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[34]  S. Woosley,et al.  TYPE Ib/c SUPERNOVAE IN BINARY SYSTEMS. I. EVOLUTION AND PROPERTIES OF THE PROGENITOR STARS , 2010, 1004.0843.

[35]  A post-mortem investigation of the Type IIb supernova 2001ig , 2006, astro-ph/0603336.

[36]  Alicia M. Soderberg,et al.  RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION , 2010, 1005.1932.

[37]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[38]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[39]  R. Kirshner,et al.  METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL , 2015, 1511.01907.

[40]  R. Humphreys,et al.  Eta Carinae and the supernova impostors , 2012 .

[41]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[42]  H. Falcke,et al.  Radio evolution of supernova SN 2008iz in M 82 , 2016, 1606.08742.

[43]  Roger C. Boysen,et al.  The Arcminute Microkelvin Imager , 2008, 0807.2469.

[44]  P. Chandra,et al.  RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA , 2012, 1205.0250.

[45]  G. Anderson,et al.  AMIsurvey: Calibration and imaging pipeline for radio data , 2015 .

[46]  Tim D. Staley,et al.  Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA , 2015, Astron. Comput..

[47]  D. Perley,et al.  A SYSTEMATIC STUDY OF MID-INFRARED EMISSION FROM CORE-COLLAPSE SUPERNOVAE WITH SPIRITS , 2016, 1601.03440.

[48]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[49]  A. Soderberg,et al.  RADIO OBSERVATIONS REVEAL UNUSUAL CIRCUMSTELLAR ENVIRONMENTS FOR SOME TYPE Ibc SUPERNOVA PROGENITORS , 2012, 1201.5120.

[50]  A. J. van der Horst,et al.  Gamma-Ray Burst Jets and their Radio Observations , 2014, Publications of the Astronomical Society of Australia.

[51]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[52]  E. Ofek,et al.  PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS , 2014, 1401.5468.

[53]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[54]  N. Chugai,et al.  SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .

[55]  R. A. M. J. Wijers,et al.  Probing the bright radio flare and afterglow of GRB 130427A with the Arcminute Microkelvin Imager , 2014, 1403.2217.

[56]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[57]  P. Chandra,et al.  ELEVEN YEARS OF RADIO MONITORING OF THE TYPE IIn SUPERNOVA SN 1995N , 2008, 0809.2810.

[58]  V. Dwarkadas,et al.  X-ray and radio emission from the luminous supernova 2005kd. , 2016, Monthly notices of the Royal Astronomical Society.

[59]  K. Nomoto,et al.  iPTF13bvn: THE FIRST EVIDENCE OF A BINARY PROGENITOR FOR A TYPE Ib SUPERNOVA , 2014, 1403.7288.

[60]  F. Schinzel,et al.  SN 2001em: NOT SO FAST , 2008, 0810.1478.

[61]  S. R. Kulkarni,et al.  The Radio and X-Ray Luminous SN 2003bg and the Circumstellar Density Variations around Radio Supernovae , 2005 .

[62]  A. V. Tutukov,et al.  On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses , 1985 .

[63]  C. Fransson,et al.  The X-Ray and Radio Emission from SN 2002ap: The Importance of Compton Scattering , 2004, astro-ph/0401196.

[64]  D. Frail,et al.  An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind , 2012, 1209.1102.

[65]  Kurt W. Weiler,et al.  Modulations in the radio light curve of the Type IIb supernova 2001ig: evidence for a Wolf-Rayet binary progenitor? , 2004 .

[66]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[67]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[68]  William C. Danchi,et al.  A dusty pinwheel nebula around the massive star WR104 , 1999, Nature.

[69]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[70]  R. Osten,et al.  A prompt radio transient associated with a gamma-ray superflare from the young M dwarf binary DG CVn. , 2014, 1410.1545.

[71]  D. Fox,et al.  A non-spherical core in the explosion of supernova SN 2004dj , 2006, Nature.

[72]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[73]  T. Matheson,et al.  The Supernova Impostors , 2012 .

[74]  T. J. W. Lazio,et al.  A New Model for the Galactic Distribution of Free Electrons and its Fluctuations , 2001 .

[75]  L. Chomiuk,et al.  A NEW MODEL FOR THE RADIO EMISSION FROM SN 1994I AND AN ASSOCIATED SEARCH FOR RADIO TRANSIENTS IN M51 , 2014, 1405.0228.

[76]  N. Chugai,et al.  A massive circumstellar envelope around the type-IIn supernova SN 1995G , 2003, astro-ph/0306330.

[77]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.